搜索
    上传资料 赚现金
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT
    立即下载
    加入资料篮
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT01
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT02
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT03
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT04
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT05
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT06
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT07
    1.4.2用空间向量研究距离、夹角问题之一:距离问题课件PPT08
    还剩19页未读, 继续阅读
    下载需要50学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)选择性必修 第一册1.4 空间向量的应用示范课ppt课件

    展开
    这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用示范课ppt课件,共27页。PPT课件主要包含了学习新知,点到直线的距离,巩固练习,典型例题,又因为,化为向量问题,进行向量运算,回到图形,课堂总结等内容,欢迎下载使用。

    从今天开始,我们将进一步来体会向量这一工具在立体几何中的应用.
    三、1、同学们还记得直线或线段在一个平面内的投影吗?它是什么?线段的长度有什么改变? 2、在一个平面内一条线段在一条直线上的投影是怎样子的?线段的长度有什么改变? 3、那向量在另一个向量上的投影是怎么回事? 答:线段只有大小没有方向,所以投影肯定是正的,但向量是即有大小又有方向,所以大小、方向都有投影。那如何表示方向的投影?请同学们看看向量投影的定义。
    将空间向量a,b ,平移到同一个平面α内,利用平面上向量的投影得到与向量b共线的向量c,即: c =|a|cs〈a,b〉 , 向量c称为向量a在向量b上的投影向量.
    以上是我们在平面向量中我们学习过投影向量的概念,你能把它推广到空间向量中吗?
    反思:1、如果不懂在空间中向量在另一向量上的投影怎办?
    答:不是努力去搞懂,而是要回到过去即最初的那个地方,也就是去搞懂在平面内向量在另一向量上的投影定义,把平面内的定义搞懂了,自然就会把空间内的定义搞懂。有种方法叫回到定义中去,即最开始的那个原点。
    点P 到直线l的距离为PQ =
    点到直线的距离、两条平行直线之间的距离
    2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.
    已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C, D1A1的中点,则点A到直线EF的距离为     . 
    向量法求点到平面的距离:
    点到平面的距离、两个平行平面之间的距离
    这个结论说明,平面外一点到平面的距离等于连结此点与平面上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的绝对值.请看解法②。
    平面外一点到平面的距离等于连结此点与平面上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的绝对值.
    直线和平面间的距离:如果一条直线l与一个平面α平行,可在直线l上任取一点P,将线面距离转化为点P到平面α的距离求解.两个平行平面之间的距离如果两个平面α,β互相平行,在其中一个平面α内任取一点P,可将两个平行平面的距离转化为点P到平面β的距离求解.
    在正四棱柱ABCD-A1B1C1D1中,底面边长为2,侧棱长为4,则点B1到平面AD1C的距离为     . 
    解析:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,则A(2,0,0),C(0,2,0),D1(0,0,4),B1(2,2,4),
    例1已知直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,求点B到直线A1C1的距离.
    解:以B为坐标原点,建立如图所示的空间直角坐标系,则A1(4,0,1),C1(0,3,1),所以直线A1C1的方向向量
    所以点B到直线A1C1的距离
    用向量法求点到直线的距离时需注意以下几点:(1)不必找点在直线上的垂足以及垂线段;(2)在直线上可以任意选点,但一般选较易求得坐标的特殊点;(3)直线的方向向量可以任取,但必须保证计算正确.
    例2: 如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.
    分析:用几何法做相当困难,注意到坐标系建立后各点坐标容易得出,又因为求点到平面的距离可以用法向量来计算,而法向量总是可以快速算出.
    反思:此类题典型的说明了向量法与几何法各有什么优劣。结合前面几节课的内容。 几何法:缺点:几何法复杂难懂,需要空间想象能力超强。几何法思维的发生发展难,几何法技巧性高个性强,很不容易想到。 优点:几何法证(求)出来了我们就知道为什么能证(求)出来,几何法能看清几何体的结构本质。几何法是垂直我们就知道为什么垂直,因为有图形为证。也因为几何法我们是通过视觉,向量法却是大脑的抽象思维。 向量法:优点:向量法简单明了没几步。此题可看出向量法的威力和优越。向量法是证出来了也不知道为什么能证出来。向量法表面上是代数运算实际上是几何运算,几何运算被隐藏起来了。向量法证明是空荡荡的,找不到一个坚实的支撑点。向量法看不清楚。 结合前几节课的题可看出向量法是只披着羊皮的狼。向量法求解与证明可以有统一的模式,几何法却是技巧性高个性强。 缺点:运算量很大。
    用空间向量解决立体几何问题的“三步曲”。
    (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;
    (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;
    (3)把向量的运算结果“翻译”成相应的几何意义。
    相关课件

    人教A版 (2019)选择性必修 第一册1.4 空间向量的应用获奖课件ppt: 这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用获奖课件ppt,共47页。PPT课件主要包含了常考题型,解题方法等内容,欢迎下载使用。

    高中人教A版 (2019)1.4 空间向量的应用优秀课件ppt: 这是一份高中人教A版 (2019)1.4 空间向量的应用优秀课件ppt,共34页。PPT课件主要包含了一两个平面的夹角,不大于90°,即时巩固,因此CM⊥SN,反思感悟,两个平面的夹角等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第一册1.4 空间向量的应用试讲课ppt课件: 这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用试讲课ppt课件,共25页。PPT课件主要包含了即时巩固,点到直线的距离,x+y+z=1等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map