2022届中考数学专题练 专题05 分式方程
展开
这是一份2022届中考数学专题练 专题05 分式方程,文件包含2022届中考数学专题练专题05分式方程解析版docx、2022届中考数学专题练专题05分式方程原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
专题05 分式方程
一.选择题
1.(山东省淄博市2021年中考数学试题)甲、乙两人沿着总长度为的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为,则下列方程中正确的是( )
A. B. C. D.
【答案】D
【分析】
根据题意可直接进行求解.
【详解】
解:由题意得:;
故选D.
【点睛】
本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.
2.(2021·山东中考真题)某工厂生产、两种型号的扫地机器人.型机器人比型机器人每小时的清扫面积多50%;清扫所用的时间型机器人比型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设型扫地机器人每小时清扫,根据题意可列方程为( )
A. B.
C. D.
【答案】D
【分析】
根据清扫100m2所用的时间A型机器人比B型机器人多用40分钟列出方程即可.
【详解】
解:设A型扫地机器人每小时清扫xm2,
由题意可得:,
故选D.
【点睛】
本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系.
3.(2020年枣庄市)对于实数、,定义一种新运算“”为:,这里等式右边是实数运算.例如:.则方程的解是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可.
【详解】解:
∴方程表达为:
解得:,
经检验,是原方程的解,
故选:B.
【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.
4、(2019•莱芜区)为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A型“共享单车”,因为单车需求量增加,计划继续投放B型单车,B型单车的投放数量与A型单车的投放数量相同,投资总费用减少20%,购买B型单车的单价比购买A型单车的单价少50元,则A型单车每辆车的价格是多少元?设A型单车每辆车的价格为x元,根据题意,列方程正确的是( )
A.=
B.=
C.=
D.=
【解答】解:设A型单车每辆车的价格为x元,则B型单车每辆车的价格为(x﹣50)元,
根据题意,得=
故选:A.
5.(2019年山东省济南市)化简+的结果是( )
A.x﹣2 B. C. D.
解:原式=+==,
故选:B.
6、(2019年山东省济宁市)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G络.5G络峰值速率为4G络峰值速率的10倍,在峰值速率下传输500兆数据,5G络比4G络快45秒,求这两种络的峰值速率.设4G络的峰值速率为每秒传输x兆数据,依题意,可列方程是( )
A.﹣=45 B.﹣=45
C.﹣=45 D.﹣=45
【分析】直接利用5G络比4G络快45秒得出等式进而得出答案.
【解答】解:设4G络的峰值速率为每秒传输x兆数据,依题意,可列方程是:
﹣=45.
故选:A.
【点评】此题主要考查了由实际问题抽象出分式方程,正确得出等式是解题关键.
7.(2019年 淄博市)解分式方程=﹣2时,去分母变形正确的是( )
A.﹣1+x=﹣1﹣2(x﹣2) B.1﹣x=1﹣2(x﹣2)
C.﹣1+x=1+2(2﹣x) D.1﹣x=﹣1﹣2(x﹣2)
【解答】解:去分母得:1﹣x=﹣1﹣2(x﹣2),
故选:D.
二.填空题
8.(2021·山东中考真题)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为万平方米,则所列方程为________.
【答案】
【分析】
原计划每天绿化的面积为万平方米,则实际每天绿化的面积为万平方米,根据工作时间=工作总量工作效率,结合实际比原计划提前30天完成了这一任务,即可列出关于的分式方程.
【详解】
设原计划每天绿化的面积为万平方米,则实际每天绿化的面积为万平方米,
依据题意:
故答案为:
【点睛】
本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
9、(2020 菏泽).方程的解是______.
【答案】
【解析】
【分析】
方程两边都乘以化分式方程为整式方程,解整式方程得出的值,再检验即可得出方程的解.
【详解】方程两边都乘以,得:,
解得:,
检验:时,,
所以分式方程的解为,
故答案为:.
【点睛】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
10、(潍坊市2020年)若关于x的分式方程有增根,则_________.
【答案】.
【解析】
【分析】
先把分式方程去分母转化为整式方程,然后由分式方程有增根求出的值,代入到转化以后的整式方程中计算即可求出的值.
【详解】
解:去分母得:,整理得:,
∵关于的分式方程有增根,即,
∴,
把代入到中得:,解得:,
故答案为:.
【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.
11、(2019 滨州)方程+1=的解是 .
【分析】公分母为(x﹣2),去分母转化为整式方程求解,结果要检验.
【解答】解:去分母,得x﹣3+x﹣2=﹣3,
移项、合并,得2x=2,
解得x=1,
检验:当x=1时,x﹣2≠0,
所以,原方程的解为x=1,
故答案为:x=1.
【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,(2)解分式方程一定注意要验根.
三.解答题
12.(2021·山东中考真题)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.
(1)求第一次每件的进价为多少元?
(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?
【答案】(1)第一次每件的进价为50元;(2)两次的总利润为1700元.
【分析】
(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据等量关系,列出分式方程,即可求解;
(2)根据总利润=总售价-总成本,列出算式,即可求解.
【详解】
解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,
根据题意得:,解得:x=50,
经检验:x=50是方程的解,且符合题意,
答:第一次每件的进价为50元;
(2)(元),
答:两次的总利润为1700元.
【点睛】
本题主要考查分式方程的实际应用,找准等量关系,列出分式方程,是解题的关键.
13.(2021·山东中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
【答案】(1)30人;(2)39天
【分析】
(1)设当前参加生产的工人有人,根据每人每小时完成的工作量不变列出关于的方程,求解即可;
(2)设还需要生产天才能完成任务.根据前面4天完成的工作量+后面天完成的工作量=760列出关于的方程,求解即可.
【详解】
解:(1)设当前参加生产的工人有x人,
依题意得:,
解得:,
经检验,是原方程的解,且符合题意.
答:当前参加生产的工人有30人.
(2)每人每小时的数量为(万剂).
设还需要生产y天才能完成任务,
依题意得:,
解得:,(天)
答:该厂共需要39天才能完成任务.
【点睛】
本题考查分式方程的应用和一元一次方程的应用,分析题意,找到合适的数量关系是解决问题的关键.
14.(2021·山东中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.
(1)A,B两种花卉每盆各多少元?
(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
【答案】(1)A 种花弃每盆1元,B种花卉每盆1.5元;(2)购买A 种花卉1500盆时购买这批花卉总费用最低,最低费用为 8250元
【分析】
(1)设A 种花弃每盆x元,B 种花卉每盆(x+0.5)元,根据题意列分式方程,解出方程并检验;
(2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤(6000-t),w=t+1.5(6000-t)=-0.5t+9000,w随t的增大而减小,所以根据t的范围可以求得w的最小值.
【详解】
解:(1)设A 种花弃每盆x元,B 种花卉每盆(x+0.5)元.
根据题意,得.
解这个方程,得x=1.
经检验知,x=1是原分式方程的根,并符合题意.
此时x+0.5=1+0.5=1.5(元).
所以,A种花弃每盆1元,B种花卉每盆1.5元.
(2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤(6000-t),
解得∶t≤1500.
由题意,得w=t+1.5(6000-t)=-0.5t+9000.
因为w是t的一次函数,=-0.5<0,w随t的增大而减小,所以当t=1500 盆时,w最小.
w=-0.5×1500+9000=8250(元).
所以,购买A种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元.
【点睛】
本题主要考查了分式方程解决实际问题和一次函数求最值,根据等量关系列出方程和函数关系式及取值范围是解题关键.
15.(2021·山东中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
【答案】(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.
【分析】
(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.
【详解】
解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得:
,
整理得:x2-18x+45=0,
解得:x=15或x=3(舍去),
经检验,x=15是原分式方程的解,符合实际,
∴x-5=15-5=10(元),
答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:
w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,
∵a=-20,
当a=5时,函数有最大值,最大值是2000元,
答:当降价5元时,该商场利润最大,最大利润是2000元.
【点睛】
本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式.
16、(2020 聊城)今年植树节期间,某景观园林公司购进一批成捆的,两种树苗,每捆种树苗比每捆种树苗多10棵,每捆种树苗和每捆种树苗的价格分别是630元和600元,而每棵种树苗和每棵种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵,种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进种树苗和种树苗各多少棵?并求出最低费用.
【答案】(1)这一批树苗平均每棵的价格是20元;(2)购进种树苗3500棵,种树苗2000棵,能使得购进这批树苗的费用最低为111000元.
【解析】
【分析】
(1)设这一批树苗平均每棵的价格是元,分别表示出两种树苗的数量,根据“每捆种树苗比每捆种树苗多10棵”列方程即可求解;
(2)设购进种树苗棵,这批树苗的费用为,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.
【详解】解:(1)设这一批树苗平均每棵的价格是元,
根据题意,得,
解之,得.
经检验知,是原分式方程的根,并符合题意.
答:这一批树苗平均每棵的价格是20元.
(2)由(1)可知种树苗每棵价格为元,种树苗每棵价格为元,
设购进种树苗棵,这批树苗的费用为,则
.
∵是的一次函数,,随着的增大而减小,,
∴当棵时,最小.此时,种树苗有棵,.
答:购进种树苗3500棵,种树苗2000棵,能使得购进这批树苗的费用最低为111000元.
【点睛】本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.
17、(泰安市2020年)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.
(1)A,B两种茶叶每盒进价分别为多少元?
(2)第一次所购茶叶全部售完后第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?
【答案】(1)A,B两种茶叶每盒进价分别为200元,280元;(2)第二次购进A种茶叶40盒,B种茶叶60盒
【解析】
【分析】
(1)设A种茶叶每盒进价为元,则B种茶叶每盒进价为元,根据“4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒”列出分式方程解答,并检验即可;
(2)设第二次A种茶叶购进盒,则B种茶叶购进盒,根据题意,表达出打折前后,A,B两种茶叶的利润,列出方程即可解答.
【详解】解:(1)设A种茶叶每盒进价为元,则B种茶叶每盒进价为元.
根据题意,得
.
解得.
经检验:是原方程的根.
∴(元).
∴A,B两种茶叶每盒进价分别为200元,280元.
(2)设第二次A种茶叶购进盒,则B种茶叶购进盒.
打折前A种茶叶的利润为.
B种茶叶的利润为.
打折后A种茶叶的利润为.
B种茶叶的利润为0.
由题意得:.
解方程,得:.
∴(盒).
∴第二次购进A种茶叶40盒,B种茶叶60盒.
【点睛】本题考查了分式方程及一元一次方程的实际应用问题,解题的关键是设出未知数,找出等量关系,列出方程,并注意分式方程一定要检验.
18、(2020 德州).小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.
(1)超市B型画笔单价多少元?
(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.
(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?
【答案】(1)超市B型画笔单价为5元;(2),其中x是正整数;(3)小刚能购买65支B型画笔.
【解析】
【分析】
(1)设超市B型画笔单价a元,根据“花100元买了相同支数的B型画笔”,列出分式方程,即可求解;
(2)分两种情况:当小刚购买的B型画笔支数时, 当小刚购买的B型画笔支数时,分别列出函数表达式,即可;
(3)把y=270代入第(2)小题的函数表达式,即可求解.
【详解】解:(1)设超市B型画笔单价a元,则A型画笔单价为元,
由题意列方程得,
解得
经检验,是原方程的解.
答:超市B型画笔单价为5元
(2)由题意知,
当小刚购买的B型画笔支数时,费用为
当小刚购买的B型画笔支数时,费用为
所以其中x是正整数
(3)当时,解得,因为,故不符合题意,舍去.
当时,,符合题意
答:小刚能购买65支B型画笔.
【点睛】本题主要考查分式方程和一次函数的实际应用,理解题目中的数量关系,列出方程和函数表达式,是解题的关键.
19、(青岛市2020年)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量与注水时间之间满足一次函数关系,其图象如图所示.
(1)根据图象求游泳池的蓄水量与注水时间之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;
(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?
【答案】(1)y=140t+100,140m3/h;(2)8h
【解析】
【分析】
(1)用待定系数法即可求出y与t的函数关系式,然后求出注满水池用的时间,进而可求出同时打开甲、乙两个进水口的注水速度;
(2)设甲的注水速度是x m3/h,则乙的注水速度是(140-x) m3/h,根据单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍列方程求解即可.
【详解】
解:(1)设y=t+100,把(2,380)代入得,
2+100=380,
解得
=140,
∴y=140t+100,
当y=480时,
则480=140t+100,
解得t=,
(480-100)÷=140m3/h;
∴y=140t+100,同时打开甲、乙两个进水口的注水速度是140m3/h;
(2)设甲的注水速度是x m3/h,则乙的注水速度是(140-x) m3/h,由题意得
,
解得x=60,
经检验x=60符合题意,
(h),
∴单独打开甲进水口注满游泳池需8h.
【点睛】
本题考查了一次函数的应用,分式方程的应用,掌握待定系数法是解(1)的关键,找出数量关系列出方程是解(2)的关键.
20、(2019年山东临沂T20)解方程:=.
{解析}本题考查了解分式方程,一般思路是通过去分母转化为整式方程求解,注意解分式方程一定要验根.
{答案}解:方程两边都乘以x(x-2),得5x=3(x-2).
去括号,得5x=3x-6.
移项、合并同类项,得2x=6.
系数化为1,得x=3.
经检验,x=3是原方程的解.
所以,原方程的解为x=3.
21、(2019 青岛)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.
(1)求甲、乙两人每天各加工多少个这种零件?
(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?
【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;
(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.
【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5
化简得600×1.5=600+5×1.5x
解得x=40
∴1.5x=60
经检验,x=40是分式方程的解且符合实际意义.
答:甲每天加工60个零件,乙每天加工,40个零件.
(2)设甲加工了x天,乙加工了y天,则由题意得
由①得y=75﹣1.5x③
将③代入②得150x+120(75﹣1.5x)≤7800
解得x≥40,
当x=40时,y=15,符合问题的实际意义.
答:甲至少加工了40天.
【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.
22.(2019年山东省日照市)“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?
【分析】设每件产品的实际定价是x元,则原定价为(x+40)元,根据“按原定价需花费5000元购买的产品,现在只花费了4000元”建立方程,解方程即可.
【解答】解:设每件产品的实际定价是x元,则原定价为(x+40)元,
由题意,得
=.
解得x=160.
经检验x=160是原方程的解,且符合题意.
答:每件产品的实际定价是160元.
23、(2019 威海)列方程解应用题:
小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.
【解答】解:设小明的速度是x米/分钟,则小刚骑自行车的速度是3x米/分钟,根据题意可得:
﹣4=,
解得:x=50,
经检验得:x=50是原方程的根,故3x=150,
答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟.
24.(2019年山东潍坊)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.
(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)
{解析}本题考查了分式方程与二次函数的实际应用.(1)解题的关键在于找到等量关系,根据题目中给出的条件,去年和今年的产量之间的关系,去年和今年价格之间的关系,去年和今年销售金额之间的关系,设出未知数,就可以列出方程;(2)属于常见的二次函数利润问题,能根据价格与销售量之间的关系列出函数关系式,根据二次函数关系式就可以求出函数的最大值.
{答案}解:(1)设今年这种水果每千克的平均批发价为x元,由题意,得
=1000.
解之,得x1=24,x2=-5(舍去).
答:今年这种水果每千克的平均批发价为24元.
(2)设每千克的平均销售价为m元,由题意,得
w=(m-24)(300+180×)=-60(m-35)2+7260.
∵-60<0,∴当m=35时,w取得最大值为7260.
答:当每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.
相关试卷
这是一份专题05 分式方程(题型归纳)试卷,共83页。试卷主要包含了分式方程的解法等内容,欢迎下载使用。
这是一份中考数学二轮复习压轴题专题05 分式方程(含解析),共16页。
这是一份中考数学专题复习 专题10 分式方程及其应用,文件包含中考数学专题复习专题10分式方程及其应用教师版含解析docx、中考数学专题复习专题10分式方程及其应用学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。