高考物理专题训练【电磁感应】学案(无答案)
展开动量定理在电磁感应中的应用
在导体单杆切割磁感线做变加速运动时,若牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题
例题1
两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平直轨道的连接处平滑无摩擦,在平直轨道右端放置另一金属杆b,杆a、b的电阻分别为Ra=2 Ω、Rb=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T。现杆b以初速度大小v0=5 m/s开始向左滑动,同时由静止释放杆a,杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A;从a下滑到水平轨道时开始计时,a、b运动的速度—时间图象如图乙所示(以a运动方向为正方向),其中ma=2 kg,mb=1 kg,g取10 m/s2,求:
甲 乙
(1)杆a在弧形轨道上运动的时间;
(2)杆a在水平轨道上运动过程中通过其截面的电荷量;
(3)在整个运动过程中杆b产生的焦耳热。
动量守恒定律在电磁感应中的应用
“双轨+双杆”模型
如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,ab棒以初速度v0向右滑动.运动过程中,ab、cd棒始终与导轨垂直并接触良好.
模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab棒受到水平向左的安培力,向右减速;cd棒受到水平向右的安培力,向右加速,最终导体棒ab、cd共速,感应电流消失,一起向右做匀速直线运动,该过程导体棒ab、cd组成的系统所受合外力为零,动量守恒:mabv0=(mab+mcd)v共,若ab棒、cd棒所在导轨不等间距,则动量不守恒,可考虑运用动量定理求解.
例题2
如图所示,水平面内放置着足够长的两光滑平行导轨,m、n是两根同样材料的圆柱形金属导体棒,两根棒的长度相等,n棒的质量是m棒的两倍。匀强磁场方向竖直向下。若给m棒9 J的初动能,使之向左运动,导轨的电阻忽略不计,则整个过程m棒产生的最大热量是( )
A.2 J B.4 J C.6 J D.9 J
楞次定律与法拉第电磁感应定律的应用
1.感应电流方向的判断
2.楞次定律中“阻碍”的主要表现形式
(1)阻碍原磁通量的变化——“增反减同”;
(2)阻碍物体间的相对运动——“来拒去留”;
(3)使线圈面积有扩大或缩小的趋势——一般情况下为“增缩减扩”;
(4)阻碍原电流的变化(自感现象)——一般情况下为“增反减同”.
3.求感应电动势的方法
(1)法拉第电磁感应定律:
E=neq \f(ΔΦ,Δt)eq \b\lc\{\rc\ (\a\vs4\al\c1(S不变时,E=nS\f(ΔB,Δt),B不变时,E=nB\f(ΔS,Δt)))
(2)导体棒垂直切割磁感线:E=BLv.
(3)导体棒绕与磁场平行的轴匀速转动:E=eq \f(1,2)BL2ω.
(4)线圈绕与磁场垂直的轴匀速转动:e=nBSωsin ωt.
4.应用法拉第电磁感应定律的三点注意
(1)公式E=neq \f(ΔΦ,Δt)求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.
(2)利用公式E=nSeq \f(ΔB,Δt)求感应电动势时,S为线圈在磁场范围内的有效面积.
(3)通过回路截面的电荷量q=eq \x\t(I)Δt=eq \f(nΔΦ,R总Δt)Δt=eq \f(nΔΦ,R总).q仅与n、ΔΦ和回路总电阻R总有关,与时间长短无关,与Φ是否均匀变化无关.
例题3(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示.一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上.t=0时磁感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示.则在t=0到t=t1的时间间隔内( )
A.圆环所受安培力的方向始终不变
B.圆环中的感应电流始终沿顺时针方向
C.圆环中的感应电流大小为eq \f(B0rS,4t0ρ)
D.圆环中的感应电动势大小为eq \f(B0πr2,4t0)
电磁感应中的图像问题
1.电磁感应中常见的图像
常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图像.
2.解答此类问题的两个常用方法
(1)排除法:定性分析电磁感应过程中某个物理量的变化情况,把握三个关注,快速排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.
(2)函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图像作出判断,这种方法得到的结果准确、详细,但不够简捷.
例题4(多选)如图5所示,光滑金属导轨DCEF固定在水平面并处于竖直向下的匀强磁场中,CD、EF平行且足够长,CE是粗细均匀、电阻率一定的导体,且与EF夹角为θ(θ<90°),CD和EF的电阻不计.导体棒MN与CE的材料、粗细均相同,用外力F使MN向右匀速运动,从E点开始计时,运动中MN始终与EF垂直且和导轨接触良好.若图中闭合电路的电动势为E,电流为I,消耗的电功率为P,下列图像正确的是( )
图5
电磁感应中的动力学与能量问题
1.电磁感应中的动力学与能量问题常出现的两类情景:一是线框进出磁场;二是导体棒切割磁感线运动.两类情景都综合了电路、动力学、能量知识,有时还会与图像结合,解题方法有相通之处.分析思路如下:
2.求解焦耳热Q的三种方法
(1)焦耳定律:Q=I2Rt,适用于电流恒定的情况;
(2)功能关系:Q=W克安(W克安为克服安培力做的功);
(3)能量转化:Q=ΔE(其他能的减少量).
例题5 (多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后( )
A.金属框的速度大小趋于恒定值
B.金属框的加速度大小趋于恒定值
C.导体棒所受安培力的大小趋于恒定值
D.导体棒到金属框bc边的距离趋于恒定值
新情境探究:以电磁弹射系统为背景考查楞次定律的应用
例题6
美媒称,中国第三艘航母(第二艘国产航母)正在建造当中,很可能体现出优于前两艘航母的技术进步,新航母很可能比两艘“前辈”更大,并配备电磁弹射系统,允许更大、更重的飞机携带更多武器,执行更远距离任务,航母上飞机弹射起飞所利用的电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈左侧的金属环被弹射出去,则下列说法正确的是( )
A.若将金属环置于线圈的右侧,环将不能弹射出去
B.金属环向左运动过程中将有扩大趋势
C.若将电池正、负极调换后,金属环不能向左弹射
D.合上开关S的瞬间,从左侧看环中产生沿逆时针方向的感应电流
以带灯的自行车为背景考查电磁感应电路问题
例题7
(多选)如图为带灯的自行车后轮的示意图,金属轮框与轮轴之间均匀地连接四根金属条,每根金属条中间都串接一个阻值为3 Ω小灯泡,车轮半径为0.3 m,轮轴半径可以忽略。车架上固定一个强磁铁,可形成圆心角为60°扇形匀强磁场区域,磁感应强度大小为2.0 T,方向垂直纸面(车轮平面)向里。若自行车后轮逆时针转动的角速度恒为10 rad/s,不计其他电阻,则( )
A.通过每个小灯泡的电流始终相等
B.当金属条ab在磁场中运动时,金属条ab中的电流从b指向a
C.当金属条ab在磁场中运动时,电路的总电阻为4 Ω
D.当金属条ab在磁场中运动时,所受安培力大小为0.135 N
以交通工具为背景考查电磁感应问题
例题8
某研学小组设计了一个辅助列车进站时快速刹车的方案。如图所示,在站台轨道下方埋有一励磁线圈,通电后形成竖直方向的磁场(可视为匀强磁场)。在车身下方固定一矩形线框,利用线框进入磁场时所受的安培力,辅助列车快速刹车。
已知列车的总质量为m,车身长为s,线框的短边ab和cd分别安装在车头和车尾,长度均为L(L小于匀强磁场的宽度),整个线框的电阻为R。站台轨道上匀强磁场区域足够长,车头进入磁场瞬间的速度为v0,假设列车停止前所受铁轨及空气阻力的合力恒为f。已知磁场的磁感应强度的大小为B,车尾进入磁场瞬间,列车恰好停止。
(1)求列车车头刚进入磁场瞬间线框中的电流大小I和列车的加速度大小a;
(2)求列车从车头进入磁场到停止所用的时间t;
(3)请你评价该设计方案的优点和缺点(优、缺点至少写一种)。
一、单选题
1.如图所示,用轻绳将一条形磁铁竖直悬挂于O点,在其正下方的水平绝缘桌面上放置一铜质圆环。现将磁铁从A处由静止释放,经过B、C到达最低处D,再摆到左侧最高处E,圆环始终保持静止,则磁铁( )
A.在A、E两点所处的高度相等
B.从A到D的过程中,圆环对桌面压力小于圆环重力
C.从C到D的过程,从上往下看圆环中产生逆时针方向的电流
D.从A到D和从D到E的过程中,圆环受到摩擦力方向相同
2.现代科学研究中常要用到高速电子,电子感应加速器是利用感生电场使电子加速的设备,它的基本原理如图甲所示,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室。当电磁铁线圈通入如图乙所示的正弦式交变电流时,真空室中产生磁场,电子在真空室中做圆周运动。以图甲中所示电流方向为正方向,俯视看在0 ~ 和 ~ T两个时间段内电子的运动,下列说法正确的是( )
A.电子都沿逆时针做加速圆周运动
B.0 ~ 内电子沿逆时针做加速圆周运动, ~ T内电子沿逆时针做减速圆周运动
C.0 ~ 内电子沿逆时针做减速圆周运动, ~ T内电子沿逆时针做加速圆周运动
D.0 ~ 内电子沿逆时针做加速圆周运动, ~ T内电子可能沿顺时针做减速圆周运动
3.图甲为手机及无线充电板,图乙为充电原理示意图。充电板接交流电源,对充电板供电,充电板内的送电线圈可产生交变磁场,从而使手机内的受电线圈产生交变电流,再经整流电路转变成直流电后对手机电池充电。为方便研究,现将问题做如下简化:设受电线圈的匝数为n,面积为S,磁场视为匀强磁场。若在t1到t2时间内,磁场垂直于受电线圈平面向上穿过线圈,其磁感应强度由B1增加到B2,则这段时间内,线圈中产生的平均感应电动势的大小和感应电流方向(俯视)为( )
A. 顺时针B. 逆时针
C. 逆时针D. 顺时针
4.如图所示,两块水平放置的金属板距离为d,用导线、开关K与一个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B中。两板间放一台压力传感器,压力传感器上表面静止放置一个质量为m、电荷量为q的带负电小球。K断开时传感器上有示数mg,K闭合稳定后传感器上示数为。则线圈中的磁场B的变化情况和磁通量的变化率分别是( )
A.正在增加, B.正在减弱,
C.正在增加, D.正在减弱,
5.如图甲所示,20匝的线圈两端M、N与一个电压表相连,线圈内有指向纸内方向的磁场,线圈中的磁通量在按图乙所示规律变化,不计线圈电阻。下列说法正确的是( )
A.电压表的正接线柱接线圈的M端
B.线圈中产生的感生电场沿顺时针方向
C.线圈中磁通量的变化率为1.5Wb/s
D.电压表的读数为8V
6.如图所示,两块水平放置的金属板距离为d。用导线、开关S与一个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B中。两板间存在如图所示的匀强磁场,当开关S闭合后,极板间一质量为m,电荷量为的微粒恰好在竖直平面内做匀速圆周运动,重力加速度为g,则线圈中的磁场B的变化情况和磁通量变化率分别是( )
A.正在增加,B.正在减弱,
C.正在减弱,D.正在增加,
7.如图甲所示,一正方形单匝金属线框放在光滑水平面上,水平面内两条平行直线MN、OP间存在垂直水平面的匀强磁场,t=0时,线框在水平向右的外力F作用下紧贴MN从静止开始做匀加速运动,外力F随时间t变化的图线如图乙实线所示,已知线框质量m=1 kg、电阻R=2 Ω,则( )
A.磁场宽度为3 m
B.匀强磁场的磁感应强度为2 T
C.线框穿过OP的过程中产生的焦耳热等于4 J
D.线框穿过MN的过程中通过导线内某一横截面的电荷量为C
求解的物理量
应用示例
电荷量或速度
-Beq \x\t(I)LΔt=mv2-mv1,q=eq \x\t(I)Δt.
位移
-eq \f(B2L2\x\t(v)Δt,R总)=0-mv0,即-eq \f(B2L2x,R总)=0-mv0
时间
-Beq \x\t(I)LΔt+F其他Δt=mv2-mv1
即-BLq+F其他Δt=mv2-mv1
已知电荷量q、F其他(F其他为恒力)
-eq \f(B2L2\x\t(v)Δt,R总)+F其他Δt=mv2-mv1,eq \x\t(v)Δt=x
已知位移x、F其他(F其他为恒力)
楞次定律
右手定则
一般用于导体棒切割磁感线的情形
高考物理考纲解读与热点难点突破专题09电磁感应现象及电磁感应规律的应用 教学案: 这是一份高考物理考纲解读与热点难点突破专题09电磁感应现象及电磁感应规律的应用 教学案,共27页。学案主要包含了命题趋势,重点、难点剖析,方法技巧,规律方法,误区警示,题型示例,变式探究,2017·新课标Ⅲ卷等内容,欢迎下载使用。
高考物理一轮复习第10章电磁感应微专题11电磁感应中的电路和图象问题学案: 这是一份高考物理一轮复习第10章电磁感应微专题11电磁感应中的电路和图象问题学案,共7页。
高考物理二轮复习第10章电磁感应微专题11电磁感应中的电路和图象问题学案: 这是一份高考物理二轮复习第10章电磁感应微专题11电磁感应中的电路和图象问题学案,共7页。