|课件下载
终身会员
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    第2章 §2.3 圆与圆的位置关系课件PPT01
    第2章 §2.3 圆与圆的位置关系课件PPT02
    第2章 §2.3 圆与圆的位置关系课件PPT03
    第2章 §2.3 圆与圆的位置关系课件PPT04
    第2章 §2.3 圆与圆的位置关系课件PPT05
    第2章 §2.3 圆与圆的位置关系课件PPT06
    第2章 §2.3 圆与圆的位置关系课件PPT07
    第2章 §2.3 圆与圆的位置关系课件PPT08
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中2.3 圆与圆的位置关系图文课件ppt

    展开
    这是一份高中2.3 圆与圆的位置关系图文课件ppt,共60页。PPT课件主要包含了学习目标,随堂演练,课时对点练,两圆相切问题,两圆相交问题,内容索引,解得-2<m<-1,综上所述,+2y-6=0,课堂小结等内容,欢迎下载使用。

    1.了解圆与圆的位置关系.2.掌握圆与圆的位置关系的判断方法.3.能用圆与圆的位置关系解决一些简单问题.
    日食是一种天文现象,在民间称此现象为天狗食日.日食只在月球与太阳呈现合的状态时发生.日食分为日偏食、日全食、日环食、全环食.我们将月亮与太阳抽象为圆,观察到的这些圆在变化的过程中位置关系是怎样的?
    前面我们运用直线的方程、圆的方程研究了直线与圆的位置关系,现在我们类比上述研究方法,运用圆的方程,通过定量计算研究圆与圆的位置关系.
    一、圆与圆的位置关系的判断
    1.代数法:设两圆的一般方程为
    则方程组解的个数与两圆的位置关系如下:
    2.几何法:若两圆的半径分别为r1,r2,两圆连心线的长为d,则两圆的位置关系如右:
    注意点:(1)利用代数法判断两圆位置关系时,当方程无解或有一解时,无法判断两圆的位置关系.(2)在判断两圆的位置关系时,优先使用几何法.
    例1 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、外离?
    解 将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径长r1=1;
    反思感悟 判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤(1)化成圆的标准方程,写出圆心和半径.(2)计算两圆圆心的距离d.(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.
    跟踪训练1 已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0.(1)当m为何值时,圆C1与圆C2外切?
    解 对于圆C1与圆C2的方程,经配方后,有C1:(x-m)2+(y+2)2=9.C2:(x+1)2+(y-m)2=4.∴两圆的圆心C1(m,-2),C2(-1,m),半径r1=3,r2=2,
    若圆C1与圆C2相外切,则C1C2=r1+r2,
    解得m=-5或m=2.
    (2)当圆C1与圆C2内含时,求m的取值范围?
    解 若圆C1与圆C2内含,则0≤C1C2<|r2-r1|=1,
    问题1 圆与圆相切包含哪几种情况?
    提示 内切和外切两种情况.
    问题2 两圆相切可用什么方法求解?
    提示 (1)几何法.利用圆心距d与两半径R,r之间的关系求得,d=R+r为外切,d=|R-r|为内切.(2)代数法.将两圆联立消去x或y得到关于y或x的一元二次方程,利用Δ=0求解.
    处理两圆相切问题的两个步骤(1)定性,即必须准确把握是内切还是外切,若只是告诉相切,则必须分两圆内切还是外切两种情况讨论.(2)转化思想,即将两圆相切的问题转化为两圆的圆心距等于两圆半径之差的绝对值(内切时)或两圆半径之和(外切时).
    例2 求半径为4,与圆(x-2)2+(y-1)2=9相切,且和直线y=0相切的圆的方程.
    解 设所求圆的方程为(x-a)2+(y-b)2=16,由圆与直线y=0相切、半径为4,得圆心C的坐标为C1(a,4)或C2(a,-4).已知圆(x-2)2+(y-1)2=9的圆心A的坐标为(2,1),半径为3.由两圆相切,得CA=4+3=7或CA=4-3=1.①当圆心为C1(a,4)时,(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),
    ②当圆心为C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),
    反思感悟 通过直线与圆,圆与圆的位置关系,建立数学模型,利用方程思想,解决求圆的方程问题.
    解 已知圆的方程可化为(x-1)2+y2=1,则圆心为C(1,0),半径为1.设所求圆的方程为(x-a)2+(y-b)2=r2(r>0).
    问题3 两圆相交时,如何求出公共弦所在的直线方程?
    提示 将两个方程化成一般式,然后作差即可求得.
    问题4 两圆公共弦长如何求得?
    提示 将公共弦所在直线的方程与其中一个圆方程联立,
    例3 已知圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0.(1)求两圆公共弦所在直线的方程及弦长;
    解 设两圆交点为A(x1,y1),B(x2,y2),
    ①-②,得x-y+4=0.∵A,B两点的坐标都满足此方程,∴x-y+4=0即为两圆公共弦所在直线的方程.
    (2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.
    得两圆的交点A(-1,3),B(-6,-2).设所求圆的圆心为(a,b),因为圆心在直线x-y-4=0上,故b=a-4.
    即x2+y2-x+7y-32=0.
    方法二 设所求圆的方程为x2+y2+6x-4+λ(x2+y2+6y-28)=0(λ≠-1),
    解得λ=-7.故所求圆的方程为x2+y2-x+7y-32=0.
    反思感悟 (1)求两圆的公共弦所在直线的方程的方法:将两圆方程相减即得两圆公共弦所在直线的方程,但必须注意只有当两圆方程中二次项系数相同时,才能如此求解,否则应先调整系数.(2)求两圆公共弦长的方法:一是联立两圆方程求出交点坐标,再用距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半径长、弦心距和弦长的一半构成的直角三角形求解.(3)已知圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交,则过两圆交点的圆的方程可设为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).
    跟踪训练3 圆心在直线x-y-4=0上,且经过圆x2+y2-4x-6=0与圆x2+y2-4y-6=0的交点的圆的方程为_____________________________________________.
    (x-3)2+(y+1)2=16(或x2+y2-6x
    所以圆x2+y2-4x-6=0与圆x2+y2-4y-6=0的交点分别为A(-1,-1),B(3,3),连接AB,则线段AB的垂直平分线的方程为y-1=-(x-1).
    所以所求圆的圆心坐标为(3,-1),
    所以所求圆的方程为(x-3)2+(y+1)2=16.方法二 同方法一求得A(-1,-1),B(3,3),设所求圆的方程为(x-a)2+(y-b)2=r2,
    所以所求圆的方程为(x-3)2+(y+1)2=16.
    方法三 设所求圆的方程为x2+y2-4x-6+λ(x2+y2-4y-6)=0,
    所以所求圆的方程为x2+y2-6x+2y-6=0.
    1.知识清单:(1)两圆的位置关系.(2)两圆的公共弦.(3)圆系方程.2.方法归纳:几何法、代数法.3.常见误区:将两圆内切和外切相混.
    1.圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是A.外离 B.外切 C.相交 D.内含
    解析 将圆的一般方程化为标准方程得C1:(x+1)2+(y+4)2=25,C2:(x-2)2+(y-2)2=9,∴C1(-1,-4),C2(2,2),r1=5,r2=3.
    ∴r1-r2<C1C2<r1+r2.因此两圆的位置关系为相交.故选C.
    2.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0
    解析 AB的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A,B,D.故选C.
    3.已知点P在圆O:x2+y2=1上运动,点Q在圆C:(x-3)2+y2=1上运动,则PQ的最小值为____.
    解析 O(0,0),C(3,0),两圆半径均为1,
    ∴PQ的最小值为3-1-1=1.
    4.已知圆C1:(x-1)2+(y-2)2=4,圆C2:x2+y2=1,则过圆C1与圆C2的两个交点且过原点O的圆的方程为__________________.
    解析 设所求圆的方程为x2+y2-2x-4y+1+λ(x2+y2-1)=0(λ≠-1),把原点代入可得1-λ=0,所以λ=1,即可得过圆C1与圆C2的两个交点且过原点O的圆的方程为x2+y2-x-2y=0.
    x2+y2-x-2y=0
    1.圆x2+y2=2与圆x2+y2+2x-2y=0的位置关系是A.相交 B.内切C.外切 D.外离
    解析 由题意得,圆x2+y2=2的圆心O1(0,0),圆x2+y2+2x-2y=0的圆心O2(-1,1),
    故|r1-r2|2.(多选)若圆C1:(x-1)2+y2=1与圆C2:x2+y2-8x+8y+m=0相切,则m等于A.16 B.7 C.-4 D.9
    解析 圆C1的圆心为(1,0),半径为1;圆C2化为(x-4)2+(y+4)2=32-m,表示以(4,-4)为圆心,
    由题意,两个圆相内切时,两圆的圆心距等于半径之差的绝对值,
    综上,m的值为-4或16.
    两个圆相外切,两圆的圆心距等于半径之和,
    3.已知直线3x+4y+4=0与圆M:x2+y2-2ax=0(a>0)相切,则圆M和圆N:(x-1)2+ (y-1)2=1的位置关系是A.外离 B.外切C.相交 D.内切
    解析 圆M的标准方程为(x-a)2+y2=a2(a>0),则圆心为(a,0),半径R=a,因为直线3x+4y+4=0与圆M:x2+y2-2ax=0(a>0)相切,
    则圆M的圆心为(2,0),半径R=2,圆N的圆心为N(1,1),半径r=1,
    因为R+r=3,R-r=1,所以R-r4.已知圆C1:(x+1)2+(y+1)2=1,圆C2:(x-3)2+(y-4)2=9,A,B分别是圆C1和圆C2上的动点,则AB的最大值为
    解析 圆C1的圆心为(-1,-1),半径为1,圆C2的圆心为(3,4),半径为3,
    5.圆C1:(x-1)2+y2=4与圆C2:(x+1)2+(y-3)2=9的相交弦所在的直线为l,则直线l被圆O:x2+y2=4截得的弦长为
    解析  由圆C1与圆C2的方程相减得l:2x-3y+2=0.
    6.(多选)下列圆中与圆C:x2+y2+2x-4y+1=0相切的是A.(x+2)2+(y+2)2=9 B.(x-2)2+(y+2)2=9C.(x-2)2+(y-2)2=25 D.(x-2)2+(y+2)2=49
    解析 由圆C:x2+y2+2x-4y+1=0,可知圆心C的坐标为(-1,2),半径r=2.A项,圆心C1(-2,-2),半径r1=3.
    ∴两圆相交;B项,圆心C2(2,-2),半径r2=3,∵C2C=5=r+r2,∴两圆外切,满足条件;
    C项,圆心C3(2,2),半径r3=5,∵C3C=3=r3-r,∴两圆内切;D项,圆心C4(2,-2),半径r4=7,∵C4C=5=r4-r,∴两圆内切.
    7.经过直线x+y+1=0与圆x2+y2=2的交点,且过点(1,2)的圆的方程为______________________.
    解析 由已知可设所求圆的方程为x2+y2-2+λ(x+y+1)=0,将(1,2)代入,
    8.过两圆x2+y2-2y-4=0与x2+y2-4x+2y=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程是____________________.
    解析 设圆的方程为x2+y2-4x+2y+λ(x2+y2-2y-4)=0(λ≠-1),则(1+λ)x2-4x+(1+λ)y2+(2-2λ)y-4λ=0,
    x2+y2-3x+y-1=0
    所以所求圆的方程为x2+y2-3x+y-1=0.
    所以圆O2的圆心在直线y=x上,不妨设为(a,a),因为圆O2过点A(0,-4),所以圆O2与圆O1外切,
    所以a=0,所以圆O2的方程为x2+y2=16.
    10.已知两圆C1:x2+y2=4,C2:(x-1)2+(y-2)2=r2(r>0),直线l:x+2y=0.(1)当圆C1与圆C2相交且公共弦长为4时,求r的值;
    解 由圆C1:x2+y2=4,知圆心C1(0,0),半径r1=2,又由圆C2:(x-1)2+(y-2)2=r2(r>0),可得x2+y2-2x-4y+5-r2=0,两式相减可得公共弦所在的直线方程为2x+4y-9+r2=0.因为圆C1与圆C2相交且公共弦长为4,所以此时相交弦过圆心C1(0,0),即r2=9(r>0),解得r=3.
    (2)当r=1时,求经过圆C1与圆C2的交点且和直线l相切的圆的方程.
    解 设过圆C1与圆C2的圆系方程为(x-1)2+(y-2)2-1+λ(x2+y2-4)=0(λ≠-1),即(1+λ)x2+(1+λ)·y2-2x-4y+4(1-λ)=0,
    由圆心到直线x+2y=0的距离等于圆的半径,
    故所求圆的方程为x2+y2-x-2y=0.
    11.过点P(2,3)向圆C:x2+y2=1上作两条切线PA,PB,则弦AB所在的直线方程为A.2x-3y-1=0 B.2x+3y-1=0C.3x+2y-1=0 D.3x-2y-1=0
    解析 因为PC垂直平分AB,故弦AB可以看作是以PC为直径的圆与圆x2+y2=1的公共弦,
    根据两圆的公共弦的求法,
    整理可得2x+3y-1=0.
    12.(多选)圆O1:x2+y2-2x=0和圆O2:x2+y2+2x-4y=0的交点为A,B,则有A.公共弦AB所在直线的方程为x-y=0B.线段AB中垂线的方程为x+y-1=0
    解析 对于A,由圆O1:x2+y2-2x=0与圆O2:x2+y2+2x-4y=0的交点为A,B,两式作差可得4x-4y=0,即公共弦AB所在直线的方程为x-y=0,故A正确;对于B,圆O1:x2+y2-2x=0的圆心为(1,0),又kAB=1,则线段AB中垂线的斜率为-1,即线段AB中垂线的方程为y-0=-1×(x-1),整理可得x+y-1=0,故B正确;
    对于C,圆O1:x2+y2-2x=0,
    对于D,P为圆O1上一动点,
    13.已知两圆C1、C2和x轴正半轴、y轴正半轴及直线x+y=2都相切,则两圆圆心的距离C1C2=______.
    解析 因为两圆C1,C2和x轴正半轴、y轴正半轴及直线x+y=2都相切,所以两圆圆心都在直线y=x上,设C1(a,a),则圆C1的方程为(x-a)2+(y-a)2=a2,设C2(b,b),则圆C2的方程为(x-b)2+(y-b)2=b2,因为两圆均与直线x+y-2=0相切,
    14.在平面直角坐标系xOy中,已知圆C1 : x2 +y2=8与圆C2 : x2+y2+2x+y-a=0相交于A,B两点.若圆C1上存在点P,使得△ABP为等腰直角三角形,则实数a的值组成的集合为_____________________.
    解析 由题意知,直线AB为2x+y+8-a=0,当∠PAB=90°或∠PBA=90°时,设C1到AB的距离为d,因为△ABP为等腰直角三角形,
    当∠APB=90°时,AB经过圆心C1,则8-a=0,即a=8.
    解析 设圆C1的半径为r=1,
    16.已知圆C:x2+y2-6x-8y+21=0.(1)若直线l1过定点A(1,1),且与圆C相切,求l1的方程;
    解 圆C:x2+y2-6x-8y+21=0化为标准方程为(x-3)2+(y-4)2=4,所以圆C的圆心为(3,4),半径为2.①若直线l1的斜率不存在,即直线为x=1,符合题意.②若直线l1的斜率存在,设直线l1的方程为y-1=k(x-1).即kx-y-k+1=0.由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
    综上,所求l1的方程为x=1或5x-12y+7=0.
    相关课件

    高中数学苏教版 (2019)选择性必修第一册2.3 圆与圆的位置关系授课ppt课件: 这是一份高中数学苏教版 (2019)选择性必修第一册2.3 圆与圆的位置关系授课ppt课件,共22页。PPT课件主要包含了知识点4圆系方程等内容,欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.5 直线与圆、圆与圆的位置图片课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.5 直线与圆、圆与圆的位置图片课件ppt,共51页。PPT课件主要包含了知识特训,能力特训等内容,欢迎下载使用。

    苏教版 (2019)选择性必修第一册第2章 圆与方程2.3 圆与圆的位置关系授课课件ppt: 这是一份苏教版 (2019)选择性必修第一册第2章 圆与方程2.3 圆与圆的位置关系授课课件ppt,文件包含23圆与圆的位置关系pptx、23圆与圆的位置关系doc等2份课件配套教学资源,其中PPT共47页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map