湖南省怀化市洪江市达标名校2021-2022学年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.学完分式运算后,老师出了一道题“计算:”.
小明的做法:原式;
小亮的做法:原式;
小芳的做法:原式.
其中正确的是( )
A.小明 B.小亮 C.小芳 D.没有正确的
2.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31
3.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是( )
A. B. C. D.
4.若分式 有意义,则x的取值范围是
A.x>1 B.x<1 C.x≠1 D.x≠0
5.已知∠BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是( )
A.0<x≤1 B.1≤x< C.0<x≤ D.x>
6.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是( )
A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣2
7.下面的图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
8.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1<x<4的范围内有实数解,则t的取值范围是
A.t≥–2 B.–2≤t<7
C.–2≤t<2 D.2<t<7
9.在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A. B.
C. D.
10.下列运算正确的是( )
A.x2•x3=x6 B.x2+x2=2x4
C.(﹣2x)2=4x2 D.( a+b)2=a2+b2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若式子有意义,则x的取值范围是_____________.
12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.
13.使有意义的x的取值范围是______.
14.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为_____.
15.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________
16.数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________.
三、解答题(共8题,共72分)
17.(8分)计算:4sin30°+(1﹣)0﹣|﹣2|+()﹣2
18.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
19.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线.
(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.
20.(8分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.
21.(8分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OABC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP⊥BC,交 OB 于点 P,连接 MP.
(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;
(2)记△OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值.
22.(10分)先化简,再求值:,且x为满足﹣3<x<2的整数.
23.(12分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.
24.如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求O的半径.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:
=
=
=
=
=1.
所以正确的应是小芳.
故选C.
2、C
【解析】
本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.
【详解】
∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.
故选:C.
【点睛】
此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
3、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.
【详解】
A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;
C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.
故选C.
【点睛】
本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.
4、C
【解析】
分式分母不为0,所以,解得.
故选:C.
5、C
【解析】
如下图,设⊙O与射线AC相切于点D,连接OD,
∴∠ADO=90°,
∵∠BAC=45°,
∴△ADO是等腰直角三角形,
∴AD=DO=1,
∴OA=,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,
∴x的取值范围是.
故选C.
6、C
【解析】
分析:
由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.
详解:
∵在中,﹣6<0,
∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,
∵当x=﹣3时,y=2,当x=﹣2时,y=3,
∴当﹣3<x<﹣2时,2<y<3,
故选C.
点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.
7、B
【解析】试题解析:A. 是轴对称图形但不是中心对称图形
B.既是轴对称图形又是中心对称图形;
C.是中心对称图形,但不是轴对称图形;
D.是轴对称图形不是中心对称图形;
故选B.
8、B
【解析】
利用对称性方程求出b得到抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x<4时对应的函数值的范围为﹣2≤y<7,由于关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,然后利用函数图象可得到t的范围.
【详解】
抛物线的对称轴为直线x=﹣=1,解得b=﹣2,
∴抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),
当x=﹣1时,y=x2﹣2x﹣1=2;当x=4时,y=x2﹣2x﹣1=7,
当﹣1<x<4时,﹣2≤y<7,
而关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,
∴﹣2≤t<7,
故选B.
【点睛】
本题考查了二次函数的性质、抛物线与x轴的交点、二次函数与一元二次方程,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.
9、B
【解析】
根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.
【详解】
由题意,设金色纸边的宽为,
得出方程:(80+2x)(50+2x)=5400,
整理后得:
故选:B.
【点睛】
本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.
10、C
【解析】
根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.
【详解】
A、x2•x3=x5,故A选项错误;
B、x2+x2=2x2,故B选项错误;
C、(﹣2x)2=4x2,故C选项正确;
D、( a+b)2=a2+2ab+b2,故D选项错误,
故选C.
【点睛】
本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x<
【解析】
由题意得:1﹣2x>0,解得:,
故答案为.
12、1
【解析】
主视图、左视图是分别从物体正面、左面看,所得到的图形.
【详解】
易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
故答案为1.
13、
【解析】
二次根式有意义的条件.
【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
14、2.54×1
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2540000的小数点向左移动6位得到2.54,
所以,2540000用科学记数法可表示为:2.54×1,
故答案为2.54×1.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15、
【解析】
作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
【详解】
如图,分别连接OA、OB、OD;
∵OA=OB= ,AB=2,
∴△OAB是等腰直角三角形,
∴∠OAB=45°;
同理可证:∠OAD=45°,
∴∠DAB=90°;
∵∠CAB=60°,
∴∠DAC=90°−60°=30°,
∴旋转角的正切值是,
故答案为:.
【点睛】
此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.
16、
【解析】
根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得.
【详解】
解:如图示,
根据题意可得AB=6cm,
设正方体的棱长为xcm,则AC=x,BC=3x,
根据勾股定理,AB2=AC2+BC2,即,
解得
故答案为:.
【点睛】
本题考查了勾股定理的应用,正确理解题意是解题的关键.
三、解答题(共8题,共72分)
17、1.
【解析】
按照实数的运算顺序进行运算即可.
【详解】
原式
=1.
【点睛】
本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.
18、(1);(2).
【解析】
(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
(2)画出树状图,然后根据概率公式列式计算即可得解.
【详解】
(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
(2)根据题意画出树状图如下:
一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
所以,P(抽出的两张卡片的图形是中心对称图形).
【点睛】
本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
19、(1)答案见解析;(2).
【解析】
试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.
试题解析:(1)证明:连结OD
∵OD=OB∴∠ODB=∠DBO
又AB=AC
∴∠DBO=∠C
∴∠ODB =∠C
∴OD ∥AC
又DE⊥AC
∴DE ⊥OD
∴EF是⊙O的切线.
(2)∵AB是直径
∴∠ADB=90 °
∴∠ADC=90 °
即∠1+∠2=90 °又∠C+∠2=90 °
∴∠1=∠C
∴∠1 =∠3
∴
∴
∴AD=8
在Rt△ADB中,AB=10∴BD=6
在又Rt△AED中,
∴
设BF=x
∵OD ∥AE
∴△ODF∽△AEF
∴ ,即,
解得:x=
20、见解析
【解析】
易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
【详解】
在平行四边形ABCD中,AB∥CD,AB=CD
∴∠ABE=∠CDF,
又AE⊥BD,CF⊥BD
∴△ABE≌△CDF(AAS),
∴AE=CF
又∠AEF=∠CFE,EF=FE,
∴△AEF≌△CFE(SAS)
∴AF=CE.
【点睛】
此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
21、(1),;(2),1,1.
【解析】
(1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;
(2)由题意可得,由(1)可得点的坐标为, 表达出△OMP的面积即可,利用二次函数的性质求出最大值.
【详解】
解:(1)∵OA=6,OC=4, 四边形OABC为矩形,
∴AB=OC=4,
∴点B,
设直线OB解析式为,将B代入得,解得,
∴,
故答案为:;
(2)由题可知,,
由(1)可知,点的坐标为
,
∴当时,有最大值1.
【点睛】
本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.
22、-5
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3
由于x≠0且x≠1且x≠﹣2,
所以x=﹣1,
原式=﹣2﹣3=﹣5
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
23、(1)见解析(2)6
【解析】
(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.
(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.
【详解】
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC
∴∠C+∠B=110°,∠ADF=∠DEC
∵∠AFD+∠AFE=110°,∠AFE=∠B,
∴∠AFD=∠C
在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,
∴△ADF∽△DEC
(2)∵四边形ABCD是平行四边形,
∴CD=AB=1.
由(1)知△ADF∽△DEC,
∴,
∴
在Rt△ADE中,由勾股定理得:
24、(1)证明见解析;(2).
【解析】
试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
(1)证明:如图1,连接OB,
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,
∵CE丄AB,
∴∠E=90°,
∴BC===5,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴,
∴BC2=CD•CE,
∴CD==,
∴OC==,
∴⊙O的半径=.
考点:切线的性质.
2022年湖南省怀化市重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022年湖南省怀化市重点达标名校中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,《语文课程标准》规定等内容,欢迎下载使用。
2022届湖南省怀化市洪江市达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届湖南省怀化市洪江市达标名校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了下列说法中,正确的个数共有等内容,欢迎下载使用。
2021-2022学年武汉市达标名校中考联考数学试卷含解析: 这是一份2021-2022学年武汉市达标名校中考联考数学试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。