四川省广福初级中学2021-2022学年中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.利用运算律简便计算52×(–999)+49×(–999)+999正确的是
A.–999×(52+49)=–999×101=–100899
B.–999×(52+49–1)=–999×100=–99900
C.–999×(52+49+1)=–999×102=–101898
D.–999×(52+49–99)=–999×2=–1998
2.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B.2 C. D.2
3.下列运算中正确的是( )
A.x2÷x8=x−6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a3
4.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
5.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
6.若x﹣2y+1=0,则2x÷4y×8等于( )
A.1 B.4 C.8 D.﹣16
7.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是( )
A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB
8.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
9.下列计算结果正确的是( )
A. B.
C. D.
10.下列方程中,是一元二次方程的是( )
A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=0
二、填空题(本大题共6个小题,每小题3分,共18分)
11.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
12.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.
13.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“<”或“=”).
14.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).
15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________
16.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.
①MN=BM+DN
②△CMN的周长等于正方形ABCD的边长的两倍;
③EF1=BE1+DF1;
④点A到MN的距离等于正方形的边长
⑤△AEN、△AFM都为等腰直角三角形.
⑥S△AMN=1S△AEF
⑦S正方形ABCD:S△AMN=1AB:MN
⑧设AB=a,MN=b,则≥1﹣1.
三、解答题(共8题,共72分)
17.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.
(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?
(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.
18.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>的x的取值范围;
(3)若点P在x轴上,且S△ACP=,求点P的坐标.
19.(8分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
(1)求证:∠BDA=∠ECA.
(2)若m=,n=3,∠ABC=75°,求BD的长.
(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
(4)试探究线段BF,AE,EF三者之间的数量关系。
20.(8分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.
求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.
21.(8分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.
(1)求单车车座E到地面的高度;(结果精确到1cm)
(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)
(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
22.(10分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.
(1)画出△ABC关于直线n的对称图形△A′B′C′;
(2)直线m上存在一点P,使△APB的周长最小;
①在直线m上作出该点P;(保留画图痕迹)
②△APB的周长的最小值为 .(直接写出结果)
23.(12分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.
(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;
(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;
(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.
24.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.
根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据乘法分配律和有理数的混合运算法则可以解答本题.
【详解】
原式=-999×(52+49-1)=-999×100=-1.
故选B.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
2、C
【解析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.
【详解】
过点D作DE⊥BC于点E
.
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..
∴AD=a.
∴DE•AD=a.
∴DE=1.
当点F从D到B时,用s.
∴BD=.
Rt△DBE中,
BE=,
∵四边形ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,
a1=11+(a-1)1.
解得a=.
故选C.
【点睛】
本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.
3、A
【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.
【详解】
解:A、x2÷x8=x-6,故该选项正确;
B、a•a2=a3,故该选项错误;
C、(a2)3=a6,故该选项错误;
D、(3a)3=27a3,故该选项错误;
故选A.
【点睛】
此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.
4、D
【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
【详解】
不等式组整理得:,
由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
即-2<a≤4,即a=-1,0,1,2,3,4,
分式方程去分母得:5-y+3y-3=a,即y=,
由分式方程有整数解,得到a=0,2,共2个,
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
5、C
【解析】
列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.
【详解】
画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为.
故选C.
6、B
【解析】
先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.
【详解】
原式=2x÷22y×23,
=2x﹣2y+3,
=22,
=1.
故选:B.
【点睛】
本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.
7、A
【解析】
根据三角形中位线定理判断即可.
【详解】
∵AD为△ABC的中线,点E为AC边的中点,
∴DC=BC,DE=AB,
∵BC不一定等于AB,
∴DC不一定等于DE,A不一定成立;
∴AB=2DE,B一定成立;
S△CDE=S△ABC,C一定成立;
DE∥AB,D一定成立;
故选A.
【点睛】
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
8、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
9、C
【解析】
利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.
【详解】
A、原式,故错误;
B、原式,故错误;
C、利用合并同类项的知识可知该选项正确;
D、,,所以原式无意义,错误,
故选C.
【点睛】
本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.
10、D
【解析】
试题解析:含有两个未知数,不是整式方程,C没有二次项.
故选D.
点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3或1.2
【解析】
【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.
【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,
∵△PBE∽△DBC,
∴∠PBE=∠DBC,∴点P在BD上,
如图1,当DP=DA=8时,BP=2,
∵△PBE∽△DBC,
∴PE:CD=PB:DB=2:10,
∴PE:6=2:10,
∴PE=1.2;
如图2,当AP=DP时,此时P为BD中点,
∵△PBE∽△DBC,
∴PE:CD=PB:DB=1:2,
∴PE:6=1:2,
∴PE=3;
综上,PE的长为1.2或3,
故答案为:1.2或3.
【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.
12、
【解析】
∵AB=AC,AD⊥BC,
∴BD=CD=2,
∵BE、AD分别是边AC、BC上的高,
∴∠ADC=∠BEC=90°,
∵∠C=∠C,
∴△ACD∽△BCE,
∴,
∴,
∴CE=,
故答案为.
13、>
【解析】
分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
故答案为>.
点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.
14、9π
【解析】
根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.
【详解】
∵∠C是直角,∠ABC=60°,
∴∠BAC=90°﹣60°=30°,
∴BC=AB=×6=3(cm),
∵△ABC以点B为中心顺时针旋转得到△BDE,
∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,
∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC
=S扇形ABE﹣S扇形BCD
=﹣
=11π﹣3π
=9π(cm1).
故答案为9π.
【点睛】
本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.
15、
【解析】
由图形可得:
16、①②③④⑤⑥⑦.
【解析】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.
【详解】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.
则∠DAH=∠BAM,
∵四边形ABCD是正方形,
∴∠BAD=90°,
∵∠MAN=45°,
∴∠BAN+∠DAN=45°,
∴∠NAH=45°,
在△MAN和△HAN中,
,
∴△MAN≌△HAN,
∴MN=NH=BM+DN,①正确;
∵BM+DN≥1,(当且仅当BM=DN时,取等号)
∴BM=DN时,MN最小,
∴BM=b,
∵DH=BM=b,
∴DH=DN,
∵AD⊥HN,
∴∠DAH=∠HAN=11.5°,
在DA上取一点G,使DG=DH=b,
∴∠DGH=45°,HG=DH=b,
∵∠DGH=45°,∠DAH=11.5°,
∴∠AHG=∠HAD,
∴AG=HG=b,
∴AB=AD=AG+DG=b+b=b=a,
∴,
∴,
当点M和点B重合时,点N和点C重合,此时,MN最大=AB,
即:,
∴≤≤1,⑧错误;
∵MN=NH=BM+DN
∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,
∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;
∵△MAN≌△HAN,
∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;
如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,
∴∠EAH=∠EAF=45°,
∵EA=EA,AH=AD,
∴△EAH≌△EAF,
∴EF=HE,
∵∠ABH=∠ADF=45°=∠ABD,
∴∠HBE=90°,
在Rt△BHE中,HE1=BH1+BE1,
∵BH=DF,EF=HE,
∵EF1=BE1+DF1,③结论正确;
∵四边形ABCD是正方形,
∴∠ADC=90°,∠BDC=∠ADB=45°,
∵∠MAN=45°,
∴∠EAN=∠EDN,
∴A、E、N、D四点共圆,
∴∠ADN+∠AEN=180°,
∴∠AEN=90°
∴△AEN是等腰直角三角形,
同理△AFM是等腰直角三角形;⑤结论正确;
∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
∴AM=AF,AN=AE,
如图3,过点M作MP⊥AN于P,
在Rt△APM中,∠MAN=45°,
∴MP=AMsin45°,
∵S△AMN=AN•MP=AM•AN•sin45°,
S△AEF=AE•AF•sin45°,
∴S△AMN:S△AEF=1,
∴S△AMN=1S△AEF,⑥正确;
∵点A到MN的距离等于正方形ABCD的边长,
∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.
即:正确的有①②③④⑤⑥⑦,
故答案为①②③④⑤⑥⑦.
【点睛】
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.
三、解答题(共8题,共72分)
17、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
【解析】
(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.
【详解】
解析:(1)设购买A种花木x棵,B种花木y棵,
根据题意,得:,解得:,
答:购买A种花木40棵,B种花木60棵;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,
根据题意,得:100﹣a≥a,解得:a≤50,
设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,
∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,
答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
考点:一元一次不等式的应用;二元一次方程组的应用.
18、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)
【解析】
(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;
(1)根据函数图像判断即可;
(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出结论.
【详解】
(1)∵点A(m,3),B(-6,n)在双曲线y=上,
∴m=1,n=-1,
∴A(1,3),B(-6,-1).
将(1,3),B(-6,-1)带入y=kx+b,
得:,解得,.
∴直线的解析式为y=x+1.
(1)由函数图像可知,当kx+b>时,-6<x<0或1<x;
(3)当y=x+1=0时,x=-4,
∴点C(-4,0).
设点P的坐标为(x,0),如图,
∵S△ACP=S△BOC,A(1,3),B(-6,-1),
∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,
解得:x1=-6,x1=-1.
∴点P的坐标为(-6,0)或(-1,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=S△BOC,得出|x+4|=1.
19、135° m+n
【解析】
试题分析:
(1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
(2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
(4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
试题解析:
(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
∴△EAC≌△BAD,
∴∠BDA=∠ECA;
(2)如下图,过点E作EG⊥CB交CB的延长线于点G,
∴∠EGB=90°,
∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
∴∠ABE=45°,BE=2,
∵∠ABC=75°,
∴∠EBG=180°-75°-45°=60°,
∴BG=1,EG=,
∴GC=BG+BC=4,
∴CE=,
∵△EAC≌△BAD,
∴BD=EC=;
(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
∵BD=EC,
∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
即当∠ABC=135°时,BD最大=;
(4)∵△ABD≌△AEC,
∴∠AEC=∠ABD,
∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
∴∠ABD+∠ABE+∠CEB=90°,
∴∠BFE=180°-90°=90°,
∴EF2+BF2=BE2,
又∵在等腰Rt△ABE中,BE2=2AE2,
∴2AE2=EF2+BF2.
点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
20、(1)详见解析;(2)详见解析.
【解析】
(1)用“SSS”证明即可;
(2)借助全等三角形的性质及角的和差求出∠DAB=∠EAC,再利用三角形内角和定理求出∠DEB=∠DAB,即可说明∠EAC=∠DEB.
【详解】
解:(1)在△ABC和△ADE中
∴△ABC≌△ADE(SSS);
(2)由△ABC≌△ADE,
则∠D=∠B,∠DAE=∠BAC.
∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.
设AB和DE交于点O,
∵∠DOA=BOE,∠D=∠B,
∴∠DEB=∠DAB.
∴∠EAC=∠DEB.
【点睛】
本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.
21、(1)81cm;(2)8.6cm;
【解析】
(1)作EM⊥BC于点M,由EM=ECsin∠BCE可得答案;
(2)作E′H⊥BC于点H,先根据E′C=求得E′C的长度,再根据EE′=CE′﹣CE可得答案.
【详解】
(1)如图1,过点E作EM⊥BC于点M.
由题意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,则单车车座E到地面的高度为51.3+30≈81cm;
(2)如图2所示,过点E′作E′H⊥BC于点H.
由题意知E′H=70×0.85=59.5,则E′C==≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).
【点睛】
本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
22、(1)详见解析;(2)①详见解析;②.
【解析】
(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;
(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;
②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.
【详解】
解:(1)如图△A′B′C′为所求图形.
(2)①如图:点P为所求点.
②∵△ABP的周长=AB+AP+BP=AB+AP+B''P
∴当AP与PB''共线时,△APB的周长有最小值.
∴△APB的周长的最小值AB+AB''=+3
故答案为 +3
【点睛】
本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.
23、(1)见解析;(2)见解析;(3)AB=1
【解析】
(1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;
(2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;
(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.
【详解】
证明:(1)∵AB是⊙O的直径且AB⊥CD,
∴∠CPB=∠BCD,
∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,
∴∠BCP=∠PED;
(2)连接OP,则OP=OB,
∴∠OPB=∠OBP,
∵PF是⊙O的切线,
∴OP⊥PF,则∠OPF=90°,
∠FPE=90°﹣∠OPE,
∵∠PEF=∠HEB=90°﹣∠OBP,
∴∠FPE=∠FEP,
∵AB是⊙O的直径,
∴∠APB=90°,
∴∠APG+∠FPE=90°,
∴2∠APG+2∠FPE=180°,
∵∠F+∠FPE+∠PEF=180°,
∵∠F+2∠FPE=180°
∴2∠APG=∠F,
∴∠APG= ∠F;
(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,
由(2)知∠APB=∠AHE=90°,
∵AN=EN,
∴A、H、E、P四点共圆,
∴∠PAE=∠PHF,
∵PH=PF,
∴∠PHF=∠F,
∴∠PAE=∠F,
tan∠PAE=tan∠F,
∴,
由(2)知∠APB=∠G=∠PME=90°,
∴∠GAP=∠MPE,
∴sin∠GAP=sin∠MPE,
则,
∴,
∴MF=GP,
∵3PF=5PG,
∴,
设PG=3k,则PF=5k,MF=PG=3k,PM=2k
由(2)知∠FPE=∠PEF,
∴PF=EF=5k,
则EM=4k,
∴tan∠PEM=,tan∠F=,
∴tan∠PAE=,
∵PE=,
∴AP=k,
∵∠APG+∠EPM=∠EPM+∠PEM=90°,
∴∠APG=∠PEM,
∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,
∴∠APG=∠ABP,
∴∠PEM=∠ABP,
则tan∠ABP=tan∠PEM,即,
∴,
则BP=3k,
∴BE=k=2,
则k=2,
∴AP=3、BP=6,
根据勾股定理得,AB=1.
【点睛】
本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.
24、(1)5;(2)36%;(3).
【解析】
试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
(2)根据:小组频数= ,进行求解即可;
(3)利用列举法求概率即可.
试题解析:
(1)E类:50-2-3-22-18=5(人),故答案为:5;
补图如下:
(2)D类:1850×100%=36%,故答案为:36%;
(3)设这5人为
有以下10种情况:
其中,两人都在 的概率是: .
江苏省盐城初级中学2021-2022学年中考数学全真模拟试题含解析: 这是一份江苏省盐城初级中学2021-2022学年中考数学全真模拟试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,对于函数y=,下列说法正确的是等内容,欢迎下载使用。
贵州省安顺黄腊初级中学2021-2022学年中考数学全真模拟试题含解析: 这是一份贵州省安顺黄腊初级中学2021-2022学年中考数学全真模拟试题含解析,共21页。试卷主要包含了解分式方程时,去分母后变形为,下列计算正确的是,下列运算正确的是,已知点P等内容,欢迎下载使用。
广西贵港市港北区第四初级中学2021-2022学年中考数学全真模拟试题含解析: 这是一份广西贵港市港北区第四初级中学2021-2022学年中考数学全真模拟试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。