年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届四川省德阳市重点名校中考数学猜题卷含解析

    2022届四川省德阳市重点名校中考数学猜题卷含解析第1页
    2022届四川省德阳市重点名校中考数学猜题卷含解析第2页
    2022届四川省德阳市重点名校中考数学猜题卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省德阳市重点名校中考数学猜题卷含解析

    展开

    这是一份2022届四川省德阳市重点名校中考数学猜题卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,已知二次函数y=,下列各式,cs30°=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若关于x的不等式组恰有3个整数解,则字母a的取值范围是(  )
    A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣1
    2.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是(  )
    A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
    3.如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )

    A. B. C. D.
    4.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是(  )
    A.0≤x0≤1 B.0<x0<1且x0≠
    C.x0<0或x0>1 D.0<x0<1
    5.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是(  )

    A.BC=CD B.AD∥BC
    C.AD=BC D.点A与点C关于BD对称
    6.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有( ).
    A.3个 B.2个 C.1个 D.0个
    7.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
    A.2 B.-2 C.4 D.-4
    8.某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )
    A. B. C. D.
    9.下列四个几何体中,主视图是三角形的是(  )
    A. B. C. D.
    10.cos30°=( )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.
    12.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.
    13.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.

    14.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.
    15.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为________.

    16.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为____.

    17.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)

    三、解答题(共7小题,满分69分)
    18.(10分)如图1,在长方形ABCD中,,,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象.
    (1)求出a值;
    (2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;
    (3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?

    19.(5分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
    (1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
    求证:①PN=PF;②DF+DN=DP;
    (2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.

    20.(8分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元
    (1)求A、B型商品的进价;
    (2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
    (3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.
    21.(10分)若关于的方程无解,求的值.
    22.(10分)先化简,再求值:( +)÷,其中x=
    23.(12分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
    (1)求 x 的范围;
    (2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
    24.(14分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.
    (1)求3、4两月平均每月下调的百分率;
    (2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?
    (3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.
    【详解】
    解:∵x的不等式组恰有3个整数解,
    ∴整数解为1,0,-1,
    ∴-2≤a<-1.
    故选B.
    【点睛】
    本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.
    2、C
    【解析】
    根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
    【详解】
    解:∵抛物线和轴有交点,
    ,
    解得:且.
    故选.
    【点睛】
    本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
    3、C
    【解析】
    如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.
    【详解】
    解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,

    此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,
    ∵AB=10,AC=8,BC=6,
    ∴AB2=AC2+BC2,
    ∴∠C=10°,
    ∵∠OP1B=10°,
    ∴OP1∥AC
    ∵AO=OB,\
    ∴P1C=P1B,
    ∴OP1=AC=4,
    ∴P1Q1最小值为OP1-OQ1=1,
    如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
    P2Q2最大值=5+3=8,
    ∴PQ长的最大值与最小值的和是1.
    故选:C.
    【点睛】
    本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.
    4、D
    【解析】
    分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.
    详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==
    当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;
    当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.
    综上所述:m<n,所求x0的取值范围0<x0<1.
    故选D.
    点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.
    5、A
    【解析】
    由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.
    【详解】
    ∵BD是∠ABC的角平分线,
    ∴∠ABD=∠CBD,
    又∵DC∥AB,
    ∴∠ABD=∠CDB,
    ∴∠CBD=∠CDB,
    ∴BC=CD.
    故选A.
    【点睛】
    此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.
    6、A
    【解析】
    3+3=6,错误,无法计算;② =1,错误;③+==2不能计算;④=2,正确.
    故选A.
    7、C
    【解析】
    对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
    即16-4k=0,解得:k=4.
    考点:一元二次方程根的判别式
    8、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】

    故选:A.
    【点睛】
    本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    9、D
    【解析】
    主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.
    【详解】
    解:主视图是三角形的一定是一个锥体,只有D是锥体.
    故选D.
    【点睛】
    此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.
    10、C
    【解析】
    直接根据特殊角的锐角三角函数值求解即可.
    【详解】

    故选C.
    【点睛】
    考点:特殊角的锐角三角函数
    点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.
    【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
    ∴a=﹣4,b=﹣3,
    则ab=1,
    故答案为1.
    【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.
    12、24
    【解析】
    先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离.
    【详解】
    y=60t﹣=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,
    当t=20-4=16时,y=576,
    600-576=24,
    即最后4s滑行的距离是24m,
    故答案为24.
    【点睛】
    本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.
    13、1:1.
    【解析】
    试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.
    考点:相似三角形的性质.
    14、41
    【解析】
    已知一元二次方程的根判别式为△=b2﹣4ac,代入计算即可求解.
    【详解】
    依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4
    ∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41
    故答案为:41
    【点睛】
    本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac是解决问题的关键.
    15、
    【解析】
    作出D关于AB的对称点D’,则PC+PD的最小值就是CD’的长度,在△COD'中根据边角关系即可求解.
    【详解】

    解:如图:作出D关于AB的对称点D’,连接OC,OD',CD'.
    又∵点C在⊙O上,∠CAB=30°,D为弧BC的中点,即,
    ∴∠BAD'=∠CAB=15°.
    ∴∠CAD'=45°.
    ∴∠COD'=90°.则△COD'是等腰直角三角形.
    ∵OC=OD'=AB=1,

    故答案为:.
    【点睛】
    本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.
    16、6
    【解析】
    试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,
    ∴AE=CE,
    设AB=AO=OC=x,
    则有AC=2x,∠ACB=30°,
    在Rt△ABC中,根据勾股定理得:BC=x,
    在Rt△OEC中,∠OCE=30°,
    ∴OE=EC,即BE=EC,
    ∵BE=3,
    ∴OE=3,EC=6,
    则AE=6
    故答案为6.
    17、40
    【解析】
    利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.
    【详解】
    解:由题意可得:∠BDA=45°,
    则AB=AD=120m,
    又∵∠CAD=30°,
    ∴在Rt△ADC中,
    tan∠CDA=tan30°=,
    解得:CD=40(m),
    故答案为40.
    【点睛】
    此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1)6;(2);;(3)10或;
    【解析】
    (1)根据图象变化确定a秒时,P点位置,利用面积求a;
    (2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;
    (3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.
    【详解】
    (1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.

    ∴AP=6,
    则a=6;
    (2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6,
    ∵Q点路程总长为34cm,第6秒时已经走12cm,
    故点Q还剩的路程为y2=34﹣12﹣;
    (3)当P、Q两点相遇前相距3cm时,
    ﹣(2x﹣6)=3,解得x=10,
    当P、Q两点相遇后相距3cm时,
    (2x﹣6)﹣()=3,解得x=,
    ∴当x=10或时,P、Q两点相距3cm
    【点睛】
    本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式.
    19、(1)①证明见解析;②证明见解析;(2),证明见解析.
    【解析】
    (1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;
    ②由勾股定理可求得DM=DP,利用①可求得MN=DF,则可证得结论;
    (2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.
    【详解】
    解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM⊥PD,∠DMP=45°,
    ∴DP=MP.
    ∵PM⊥PD,PF⊥PN,
    ∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
    在△PMN和△PDF中, ,
    ∴△PMN≌△PDF(ASA),
    ∴PN=PF,MN=DF;
    ②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
    ∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
    (2).理由如下:
    过点P作PM1⊥PD,PM1交AD边于点M1,如图,
    ∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,
    ∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.
    在△PM1N和△PDF中,
    ∴△PM1N≌△PDF(ASA),∴M1N=DF,
    由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
    ∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,
    ∴DN﹣DF=DP.

    【点睛】
    本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.
    20、(1)80,100;(2)100件,22000元;(3)答案见解析.
    【解析】
    (1)先设A型商品的进价为a元/件,求得B型商品的进价为(a+20)元/件,由题意得等式 ,解得a=80,再检验a是否符合条件,得到答案.
    (2)先设购机A型商品x件,则由题意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再设获得的利润为w元,由题意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,当x=100时代入w=﹣60x+28000,从而得答案.
    (3)设获得的利润为w元,由题意可得w(a﹣60)x+28000,分类讨论:当50<a<60时,当a=60时,当60<a<70时,各个阶段的利润,得出最大值.
    【详解】
    解:(1)设A型商品的进价为a元/件,则B型商品的进价为(a+20)元/件,

    解得,a=80,
    经检验,a=80是原分式方程的解,
    ∴a+20=100,
    答:A、B型商品的进价分别为80元/件、100元/件;
    (2)设购机A型商品x件,
    80x+100(200﹣x)≤18000,
    解得,x≥100,
    设获得的利润为w元,
    w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,
    ∴当x=100时,w取得最大值,此时w=22000,
    答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;
    (3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,
    ∵50<a<70,
    ∴当50<a<60时,a﹣60<0,y随x的增大而减小,则甲100件,乙100件时利润最大;
    当a=60时,w=28000,此时甲乙只要是满足条件的整数即可;
    当60<a<70时,a﹣60>0,y随x的增大而增大,则甲120件,乙80件时利润最大.
    【点睛】
    本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.
    21、
    【解析】
    分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.
    详解:去分母得:x(x-a)-1(x-1)=x(x-1),
    去括号得:x2-ax-1x+1=x2-x,
    移项合并得:(a+2)x=1.
    (1)把x=0代入(a+2)x=1,
    ∴a无解;
    把x=1代入(a+2)x=1,
    解得a=1;
    (2)(a+2)x=1,
    当a+2=0时,0×x=1,x无解
    即a=-2时,整式方程无解.
    综上所述,当a=1或a=-2时,原方程无解.
    故答案为a=1或a=-2.
    点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.
    22、-
    【解析】
    先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
    【详解】
    原式=[ +]÷=[-+]÷=·=,
    当x=时,原式==-.
    【点睛】
    本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
    23、(1)0<x≤200,且 x是整数(2)175
    【解析】
    (1)根据商场的规定确定出x的范围即可;
    (2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
    【详解】
    (1)根据题意得:0<x≤200,且x为整数;
    (2)设小王原计划购买x个纪念品,
    根据题意得:,
    整理得:5x+175=6x,
    解得:x=175,
    经检验x=175是分式方程的解,且满足题意,
    则小王原计划购买175个纪念品.
    【点睛】
    此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
    24、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析
    【解析】
    (1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;
    (2)分别计算出方案一与方案二的费用相比较即可;
    (3)根据(1)的答案计算出6月份的价格即可得到答案.
    【详解】
    (1)设3、4两月平均每月下调的百分率为x,
    由题意得:7500(1﹣x)2=6075,
    解得:x1=0.1=10%,x2=1.9(舍),
    答:3、4两月平均每月下调的百分率是10%;
    (2)方案一:6075×100×0.98=595350(元),
    方案二:6075×100﹣100×1.5×24=603900(元),
    ∵595350<603900,
    ∴方案一更优惠,小颖选择方案一:打9.8折购买;
    (3)不会跌破4800元/平方米
    因为由(1)知:平均每月下调的百分率是10%,
    所以:6075(1﹣10%)2=4920.75(元/平方米),
    ∵4920.75>4800,
    ∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.
    【点睛】
    此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.

    相关试卷

    四川省蓬安县重点达标名校2022年中考数学猜题卷含解析:

    这是一份四川省蓬安县重点达标名校2022年中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    2022年四川省广安市武胜县重点名校中考数学猜题卷含解析:

    这是一份2022年四川省广安市武胜县重点名校中考数学猜题卷含解析,共18页。试卷主要包含了图中三视图对应的正三棱柱是,在平面直角坐标系中,点,计算的结果是等内容,欢迎下载使用。

    2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析:

    这是一份2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析,共19页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map