2021-2022学年安徽淮北市中考数学模拟精编试卷含解析
展开这是一份2021-2022学年安徽淮北市中考数学模拟精编试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,九年级,计算的结果是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
A.1 B. C. D.
2.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为( )
A. B. C. D.
3.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )
A.1个 B.2个 C.3个 D.4
4.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= ,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
5.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4 B..5 C.6 D.8
6.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )
A. B. C. D.
7.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
居民(户)
1
2
3
4
月用电量(度/户)
30
42
50
51
那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
A.中位数是50 B.众数是51 C.方差是42 D.极差是21
8.计算(x-2)(x+5)的结果是
A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-10
9.如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )
A. B. C.5cosα D.
10.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
11.在平面直角坐标系中,点(-1,-2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是( )
A.a B.b C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.春节期间,《中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在纸上,则他们选取的诗句恰好相同的概率为________.
14.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:
则第n次的运算结果是____________(用含字母x和n的代数式表示).
15.如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,……;按此做法继续下去,则点M2000的坐标为______________.
16.4是_____的算术平方根.
17.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.
18.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:
①公交车的速度为400米/分钟;
②小刚从家出发5分钟时乘上公交车;
③小刚下公交车后跑向学校的速度是100米/分钟;
④小刚上课迟到了1分钟.
其中正确的序号是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
20.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1
21.(6分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
22.(8分)已知关于的一元二次方程 (为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.
23.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
24.(10分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:
(1)求两人相遇时小明离家的距离;
(2)求小丽离距离图书馆500m时所用的时间.
25.(10分)已知抛物线y=ax2+bx+c.
(Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
①求该抛物线的解析式;
②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
(Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
26.(12分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.
27.(12分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
(1)如图1,连接AB′.
①若△AEB′为等边三角形,则∠BEF等于多少度.
②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
(2)如图2,连接CB′,求△CB′F周长的最小值.
(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
直接利用概率的意义分析得出答案.
【详解】
解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
故选B.
【点睛】
此题主要考查了概率的意义,明确概率的意义是解答的关键.
2、B
【解析】
先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.
【详解】
解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.
∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.
故选B.
【点睛】
本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
3、B
【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①抛物线与y轴交于负半轴,则c<1,故①正确;
②对称轴x1,则2a+b=1.故②正确;
③由图可知:当x=1时,y=a+b+c<1.故③错误;
④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
综上所述:正确的结论有2个.
故选B.
【点睛】
本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
4、C
【解析】
∵四边形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,
∵BP=CQ,
∴AP=BQ,
在△DAP与△ABQ中, ,
∴△DAP≌△ABQ,
∴∠P=∠Q,
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP;
故①正确;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
∴∠DAO=∠P,
∴△DAO∽△APO,
∴ ,
∴AO2=OD•OP,
∵AE>AB,
∴AE>AD,
∴OD≠OE,
∴OA2≠OE•OP;故②错误;
在△CQF与△BPE中 ,
∴△CQF≌△BPE,
∴CF=BE,
∴DF=CE,
在△ADF与△DCE中, ,
∴△ADF≌△DCE,
∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
即S△AOD=S四边形OECF;故③正确;
∵BP=1,AB=3,
∴AP=4,
∵△AOP∽△DAP,
∴ ,
∴BE=,∴QE=,
∵△QOE∽△PAD,
∴ ,
∴QO=,OE=,
∴AO=5﹣QO=,
∴tan∠OAE==,故④正确,
故选C.
点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.
5、C
【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
,
即,
解得EF=6,
故选C.
6、C
【解析】
试题分析:由题意可得,
第一小组对应的圆心角度数是:×360°=72°,
故选C.
考点:1.扇形统计图;2.条形统计图.
7、C
【解析】
试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,
平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,
中位数为50;众数为51,极差为51-30=21,方差为[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.
故选C.
考点:1.方差;2.中位数;3.众数;4.极差.
8、C
【解析】
根据多项式乘以多项式的法则进行计算即可.
【详解】
故选:C.
【点睛】
考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.
9、D
【解析】
利用所给的角的余弦值求解即可.
【详解】
∵BC=5米,∠CBA=∠α,∴AB==.
故选D.
【点睛】
本题主要考查学生对坡度、坡角的理解及运用.
10、C
【解析】
可以用物理的思维来解决这道题.
【详解】
未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
11、C
【解析】
:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C
12、D
【解析】
∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.
∴<a<b< ,
故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
用列举法或者树状图法解答即可.
【详解】
解:如图,
由图可得,甲乙两人选取的诗句恰好相同的概率为.
故答案为:.
【点睛】
本题考查用树状图法或者列表法求随机事件的概率,熟练掌握两种解答方法是关键.
14、
【解析】
试题分析:根据题意得;;;根据以上规律可得:=.
考点:规律题.
15、 (24001,0)
【解析】
分析:根据直线l的解析式求出,从而得到根据直角三角形30°角所对的直角边等于斜边的一半求出 然后表示出与的关系,再根据点在x轴上,即可求出点M2000的坐标
详解:∵直线l:
∴
∵NM⊥x轴,M1N⊥直线l,
∴
∴
同理,
…,
所以,点的坐标为
点M2000的坐标为(24001,0).
故答案为:(24001,0).
点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.
16、16.
【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
17、(1,)或(﹣1,)
【解析】
设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
【详解】
解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
∵⊙M的半径为1,
∴x=1或x=−1,
当x=1时,y=,
当x=−1时,y=.
∴P点坐标为:(1, )或(−1, ).
故答案为(1, )或(−1, ).
【点睛】
本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
18、①②③
【解析】
由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.
【详解】
解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.
故正确的序号是:①②③.
【点睛】
本题考查了一次函数的应用.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、AC= 6.0km,AB= 1.7km;
【解析】
在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
【详解】
由题意可得:∠AOC=90°,OC=5km.
在Rt△AOC中,
∵AC=,
∴AC=≈6.0km,
∵tan34°=,
∴OA=OC•tan34°=5×0.67=3.35km,
在Rt△BOC中,∠BCO=45°,
∴OB=OC=5km,
∴AB=5﹣3.35=1.65≈1.7km.
答:AC的长为6.0km,AB的长为1.7km.
【点睛】
本题主要考查三角函数的知识。
20、1+
【解析】
分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.
详解:原式=2×-1+-1+2
=1+.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
21、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球
【解析】
(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
【详解】
(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,
根据题意得:,
解得:x=50,
经检验,x=50是原方程的解,且符合题意,
∴x+2=1.
答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.
(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,
解得:m≤2.
答:这所学校最多可购买2个乙种足球.
【点睛】
本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.
22、 (1)证明见解析;(2)或.
【解析】
(1)求出△的值,再判断出其符号即可;
(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.
【详解】
(1)依题意,得
,
,
.
∵,
∴方程总有两个实数根.
(2)∵,
∴,.
∵方程的两个实数根都是整数,且是正整数,
∴或.
∴或.
【点睛】
本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.
23、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.
【解析】
解:(1)当1≤x≤8时,每平方米的售价应为:
y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)
当9≤x≤23时,每平方米的售价应为:
y=4000+(x﹣8)×50=50x+3600(元/平方米).
∴
(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),
按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),
按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),
当W1>W2时,即485760﹣a>475200,
解得:0<a<10560,
当W1<W2时,即485760﹣a<475200,
解得:a>10560,
∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.
【点睛】
本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
24、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
【解析】
(1)根据题意得出小明的速度,进而得出得出小明离家的距离;
(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
【详解】
解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
300×5=1500(米),
∴两人相遇时小明离家的距离为1500米;
(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
1500+120(x﹣10)=4500﹣500,
解得x=.
答:小丽离距离图书馆500m时所用的时间为分.
【点睛】
本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.
25、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
【解析】
(I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
【详解】
(I)①设抛物线的解析式为y=a(x+2)2﹣3,
∵抛物线经过点B(﹣3,0),
∴0=a(﹣3+2)2﹣3,
解得:a=1,
∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
②设直线AB的解析式为y=kx+m(k≠0),
将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
得:,解得:,
∴直线AB的解析式为y=﹣2x﹣2.
∵直线l与AB平行,且过原点,
∴直线l的解析式为y=﹣2x.
当点P在第二象限时,x<0,如图所示.
S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
∴S=S△POB+S△AOB=﹣3x+2(x<0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围是≤x≤.
当点P′在第四象限时,x>0,
过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
∵S△ABE=×2×3=3,
∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围为≤x≤.
综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
(II)ac≤1,理由如下:
∵当x=c时,y=0,
∴ac2+bc+c=0,
∵c>1,
∴ac+b+1=0,b=﹣ac﹣1.
由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
把x=0代入y=ax2+bx+c,得y=c,
∴抛物线与y轴的交点为(0,c).
∵a>0,
∴抛物线开口向上.
∵当0<x<c时,y>0,
∴抛物线的对称轴x=﹣≥c,
∴b≤﹣2ac.
∵b=﹣ac﹣1,
∴﹣ac﹣1≤﹣2ac,
∴ac≤1.
【点睛】
本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
26、两人之中至少有一人直行的概率为.
【解析】
【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.
【详解】画树状图为:
共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,
所以两人之中至少有一人直行的概率为.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.
27、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
【解析】
(1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
(2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
【详解】
(1)①当△AE B′为等边三角形时,∠AE B′=60°,
由折叠可得,∠BEF=∠BE B′=×120°=60°,
故答案为60;
②A B′∥EF,
证明:∵点E是AB的中点,
∴AE=BE,
由折叠可得BE=B′E,
∴AE=B′E,
∴∠EA B′=∠E B′A,
又∵∠BEF=∠B′EF,
∴∠BEF=∠BA B′,
∴EF∥A B′;
(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
∴CF+ B′F=CF+BF=BC=10,
∵B′E+ B′C≥CE,
∴B′C≥CE﹣B′E=5﹣5,
∴B′C最小值为5﹣5,
∴△CB′F周长的最小值=10+5﹣5=5+5;
(3)如图,连接A B′,易得∠A B′B=90°,
将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
由AB=10,B B′=6,可得A B′=8,
∴QM=QN=A B′=8,
设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
∵∠BQP=90°,
∴22+(8﹣x)2=(6+x)2,
解得:x=,
∴P B′=x=.
【点睛】
本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
相关试卷
这是一份安徽省桐城实验中学2021-2022学年中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,AB∥CD,那么,方程x2﹣3x=0的根是等内容,欢迎下载使用。
这是一份安徽省砀山县重点名校2021-2022学年中考数学模拟精编试卷含解析,共24页。试卷主要包含了如图1是一座立交桥的示意图,﹣2018的相反数是等内容,欢迎下载使用。
这是一份安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,点A等内容,欢迎下载使用。