2021-2022学年鄂尔多斯市重点中学毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对 B.2对 C.3对 D.4对
2.下列计算正确的是( )
A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
3.如图是二次函数的部分图象,由图象可知不等式的解集是( )
A. B. C.且 D.x<-1或x>5
4.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为( )
A. B.2 C. D.3
5.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
A.45° B.60° C.70° D.90°
6.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为( )
A. B.π C.2π D.3π
7.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ).
A. B. C. D.
8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
9.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
A. B.
C. D.
10.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
①若C,O两点关于AB对称,则OA=;
②C,O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为π.
其中正确的是( )
A.①② B.①②③ C.①③④ D.①②④
二、填空题(共7小题,每小题3分,满分21分)
11.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.
12.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.
13.已知二次函数的图像与轴交点的横坐标是和,且,则________.
14.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.
15.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .
16.化简:=_____.
17.规定用符号表示一个实数的整数部分,例如:,.按此规定,的值为________.
三、解答题(共7小题,满分69分)
18.(10分)先化简,再求值:(﹣m+1)÷,其中m的值从﹣1,0,2中选取.
19.(5分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.
20.(8分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.
21.(10分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?
22.(10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.
(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
23.(12分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.
(I)根据题意,填写下表:
月用水量(吨/户)
4
10
16
……
应收水费(元/户)
40
……
(II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;
(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?
24.(14分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5
(1)求BC的长;
(2)如果两条对角线长的和是20,求三角形△AOD的周长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
2、D
【解析】
根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
【详解】
A、2a2﹣a2=a2,故A错误;
B、(ab)2=a2b2,故B错误;
C、a2与a3不是同类项,不能合并,故C错误;
D、(a2)3=a6,故D正确,
故选D.
【点睛】
本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
3、D
【解析】
利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
∴图象与x轴的另一个交点坐标为(-1,0).
由图象可知:的解集即是y<0的解集,
∴x<-1或x>1.故选D.
4、C
【解析】
延长BC 到E 使BE=AD,利用中点的性质得到CM= DE=AB,再利用勾股定理进行计算即可解答.
【详解】
解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,
∵BC=3,AD=1,
∴C是BE的中点,
∵M是BD的中点,
∴CM= DE=AB,
∵AC⊥BC,
∴AB==,
∴CM= ,
故选:C.
【点睛】
此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.
5、D
【解析】
已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.
6、A
【解析】
根据旋转的性质和弧长公式解答即可.
【详解】
解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
∴∠AOC=90°,
∵OC=3,
∴点A经过的路径弧AC的长== ,
故选:A.
【点睛】
此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
7、B
【解析】
试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
考点:3.线段垂直平分线性质;3.轴对称作图.
8、D
【解析】
找到从左面看到的图形即可.
【详解】
从左面上看是D项的图形.故选D.
【点睛】
本题考查三视图的知识,左视图是从物体左面看到的视图.
9、B
【解析】
设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
【详解】
解:设大马有匹,小马有匹,由题意得:
,
故选:B.
【点睛】
本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
10、D
【解析】
分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
详解:在Rt△ABC中,∵
∴
①若C.O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵
∴
当OC经过点E时,OC最大,
则C.O两点距离的最大值为4;
所以②正确;
③如图2,当时,
∴四边形AOBC是矩形,
∴AB与OC互相平分,
但AB与OC的夹角为不垂直,
所以③不正确;
④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的
则:
所以④正确;
综上所述,本题正确的有:①②④;
故选D.
点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
试题分析:如图:
∵△ABC是等边三角形,
∴∠ABC=60°,
又∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∴∠4=60°-25°=35°,
∴∠2=∠4=35°.
考点:1.平行线的性质;2.等边三角形的性质.
12、24
【解析】
先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离.
【详解】
y=60t﹣=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,
当t=20-4=16时,y=576,
600-576=24,
即最后4s滑行的距离是24m,
故答案为24.
【点睛】
本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.
13、-12
【解析】
令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值.
【详解】
解:∵二次函数的图像与轴交点的横坐标是和,
令y=0,得方程,
则和即为方程的两根,
∴,,
∵,
两边平方得:,
∴,
即,解得:,
故答案为:.
【点睛】
本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.
14、1
【解析】
根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.
【详解】
解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.
则1张普通贺卡为:元,
由题意得:,
,
答:剩下的钱恰好还能买1张普通贺卡.
故答案为:1.
【点睛】
本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.
15、2
【解析】
如图,过A点作AE⊥y轴,垂足为E,
∵点A在双曲线上,∴四边形AEOD的面积为1
∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3
∴四边形ABCD为矩形,则它的面积为3-1=2
16、
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
,故答案为.
【点睛】
本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.
17、4
【解析】
根据规定,取的整数部分即可.
【详解】
∵,∴
∴整数部分为4.
【点睛】
本题考查无理数的估值,熟记方法是关键.
三、解答题(共7小题,满分69分)
18、 ,当m=0时,原式=﹣1.
【解析】
原式括号中两项通分,并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果.根据分数分母不为零的性质,不等于-1、2,将代入原式即可解出答案.
【详解】
解:原式,
,
,
,
∵且,
∴当时,原式.
【点睛】
本题主要考查分数的性质、通分,四则运算法则以及倒数.
19、(1)见解析;(2)
【解析】
分析:
(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;
(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.
详解:
(1)如下图,连接OD.
∵OA=OD,
∴∠DAB=∠ODA,
∵∠CAD=∠DAB,
∴∠ODA=∠CAD
∴AC∥OD
∴∠C+∠ODC=180°
∵∠C=90°
∴∠ODC=90°
∴OD⊥CD,
∴CD是⊙O的切线.
(2)如下图,连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=9,AD=6,
∴BD===3,
∵∠CAD=∠BAD,∠C=∠ADB=90°,
∴△ACD∽△ADB,
∴,
∴,
∴CD=.
点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.
20、(1)证明见解析;(2)4.
【解析】
(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.
【详解】
解:(1)在△ABC和△DFE中
,
∴△ABC≌△DFE(SAS),
∴∠ACE=∠DEF,
∴AC∥DE;
(2)∵△ABC≌△DFE,
∴BC=EF,
∴CB﹣EC=EF﹣EC,
∴EB=CF,
∵BF=13,EC=5,
∴EB=4,
∴CB=4+5=1.
【点睛】
考点:全等三角形的判定与性质.
21、该工程队原计划每周修建5米.
【解析】
找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.
【详解】
设该工程队原计划每周修建x米.
由题意得:+1.
整理得:x2+x﹣32=2.
解得:x1=5,x2=﹣6(不合题意舍去).
经检验:x=5是原方程的解.
答:该工程队原计划每周修建5米.
【点睛】
本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.
22、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)
【解析】
(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
(1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.
【详解】
解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,
解得:b=﹣2,c=﹣1,
∴抛物线的解析式为.
∵令,解得:,,
∴点B的坐标为(﹣1,0).
故答案为﹣2;﹣1;(﹣1,0).
(2)存在.理由:如图所示:
①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).
设AC的解析式为y=kx﹣1.
∵将点A的坐标代入得1k﹣1=0,解得k=1,
∴直线AC的解析式为y=x﹣1,
∴直线CP1的解析式为y=﹣x﹣1.
∵将y=﹣x﹣1与联立解得,(舍去),
∴点P1的坐标为(1,﹣4).
②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.
∵将x=1,y=0代入得:﹣1+b=0,解得b=1,
∴直线AP2的解析式为y=﹣x+1.
∵将y=﹣x+1与联立解得=﹣2,=1(舍去),
∴点P2的坐标为(﹣2,5).
综上所述,P的坐标是(1,﹣4)或(﹣2,5).
(1)如图2所示:连接OD.
由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,
∴D是AC的中点.
又∵DF∥OC,
∴DF=OC=,
∴点P的纵坐标是,
∴,解得:x=,
∴当EF最短时,点P的坐标是:(,)或(,).
23、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨
【解析】
(Ⅰ)根据题意计算即可;
(Ⅱ)根据分段函数解答即可;
(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.
【详解】
解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;
当月用水量为16吨时,应收水费=15×4+1×6=66元;
故答案为16;66;
(Ⅱ)当x≤15时,y=4x;
当x>15时,y=15×4+(x﹣15)×6=6x﹣30;
(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.
由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126
X=18,
∴居民甲上月用水量为18吨,居民乙用水12吨.
【点睛】
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.
24、 (1)8;(2)1.
【解析】
(1)由平行四边形的性质和已知条件易证△AOE≌△COF,所以可得AE=CF=3,进而可求出BC的长;
(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形△AOD的周长.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AO=CO,
∴∠EAO=∠FCO,
在△AOE和△COF中
,
∴△AOE≌△COF,
∴AE=CF=3,
∴BC=BF+CF=5+3=8;
(2)∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,AD=BC=8,
∵AC+BD=20,
∴AO+BO=10,
∴△AOD的周长=AO+BO+AD=1.
【点睛】
本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.
2022年钦州市重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年钦州市重点中学毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
2022年那曲市重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年那曲市重点中学毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了答题时请按要求用笔,若=1,则符合条件的m有等内容,欢迎下载使用。
2022届河南聚焦重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022届河南聚焦重点中学毕业升学考试模拟卷数学卷含解析,共21页。