2021-2022学年福建省莆田市擢英中学中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是( )
A.0 B.1 C. D.
2.函数y=中,自变量x的取值范围是( )
A.x>3 B.x<3 C.x=3 D.x≠3
3.下列式子一定成立的是( )
A.2a+3a=6a B.x8÷x2=x4
C. D.(﹣a﹣2)3=﹣
4.下列运算,结果正确的是( )
A.m2+m2=m4 B.2m2n÷mn=4m
C.(3mn2)2=6m2n4 D.(m+2)2=m2+4
5.如图,在中,,,,点分别在上,于,则的面积为( )
A. B. C. D.
6.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是( )
A.4 B.6 C.8 D.10
7.等腰三角形底角与顶角之间的函数关系是( )
A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
8.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是( )
年龄/岁
13
14
15
16
频数
5
15
x
10- x
A.平均数、中位数 B.众数、方差 C.平均数、方差 D.众数、中位数
9.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )
A.(2,1) B.(2,0) C.(3,3) D.(3,1)
10.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )
A.20° B.30° C.45° D.50°
二、填空题(共7小题,每小题3分,满分21分)
11.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.
12.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正确的序号是 (把你认为正确的都填上).
13.已知一组数据1,2,x,2,3,3,5,7的众数是2,则这组数据的中位数是 .
14.-3的倒数是___________
15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
16.计算﹣的结果为_____.
17.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.
19.(5分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
(1)求证:∠BDA=∠ECA.
(2)若m=,n=3,∠ABC=75°,求BD的长.
(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
(4)试探究线段BF,AE,EF三者之间的数量关系。
20.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
21.(10分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;
若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
22.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
23.(12分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?
24.(14分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=,求⊙O的半径.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
解:连接AB,如图所示:
根据题意得:∠ACB=90°,
由勾股定理得:AB==;
故选C.
考点:1.勾股定理;2.展开图折叠成几何体.
2、D
【解析】
由题意得,x﹣1≠0,
解得x≠1.
故选D.
3、D
【解析】
根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.
【详解】
解:A:2a+3a=(2+3)a=5a,故A错误;
B:x8÷x2=x8-2=x6,故B错误;
C:=,故C错误;
D:(-a-2)3=-a-6=-,故D正确.
故选D.
【点睛】
本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.
4、B
【解析】
直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.
【详解】
A. m2+m2=2m2,故此选项错误;
B. 2m2n÷mn=4m,正确;
C. (3mn2)2=9m2n4,故此选项错误;
D. (m+2)2=m2+4m+4,故此选项错误.
故答案选:B.
【点睛】
本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.
5、C
【解析】
先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;
【详解】
∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如图2,过点P作PE⊥BC于E,
在Rt△BPE中,PE=BP•sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴ ,
∴ ,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6- )=,故选C.
【点睛】
本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.
6、B
【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【详解】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=AB=3,
∴DE=2OD=6.
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.
7、B
【解析】
根据一次函数的定义,可得答案.
【详解】
设等腰三角形的底角为y,顶角为x,由题意,得
x+2y=180,
所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,
故选B.
【点睛】
本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.
8、D
【解析】
由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.
【详解】
∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,
∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,
∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.
故选D.
9、A
【解析】
根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.
【详解】
由题意得,△ODC∽△OBA,相似比是,
∴,
又OB=6,AB=3,
∴OD=2,CD=1,
∴点C的坐标为:(2,1),
故选A.
【点睛】
本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
10、D
【解析】
根据两直线平行,内错角相等计算即可.
【详解】
因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.
【点睛】
本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、360°.
【解析】
根据多边形的外角和等于360°解答即可.
【详解】
由多边形的外角和等于360°可知,
∠1+∠2+∠3+∠4+∠5=360°,
故答案为360°.
【点睛】
本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
12、①②④
【解析】
分析:∵四边形ABCD是正方形,∴AB=AD。
∵△AEF是等边三角形,∴AE=AF。
∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF。
∵∠CAD≠∠DAF,∴DF≠FG。
∴BE+DF≠EF。∴③说法错误。
∵EF=2,∴CE=CF=。
设正方形的边长为a,在Rt△ADF中,,解得,
∴。
∴。∴④说法正确。
综上所述,正确的序号是①②④。
13、2.1
【解析】
试题分析:∵数据1,2,x,2,3,3,1,7的众数是2,
∴x=2,
∴这组数据的中位数是(2+3)÷2=2.1;
故答案为2.1.
考点:1、众数;2、中位数
14、
【解析】
乘积为1的两数互为相反数,即a的倒数即为,符号一致
【详解】
∵-3的倒数是
∴答案是
15、-3<x<1
【解析】
试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.
解:根据抛物线的图象可知:
抛物线的对称轴为x=﹣1,已知一个交点为(1,0),
根据对称性,则另一交点为(﹣3,0),
所以y>0时,x的取值范围是﹣3<x<1.
故答案为﹣3<x<1.
考点:二次函数的图象.
16、.
【解析】
根据同分母分式加减运算法则化简即可.
【详解】
原式=,
故答案为.
【点睛】
本题考查了分式的加减运算,熟记运算法则是解题的关键.
17、10
【解析】
连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.
【详解】
连接OC,当CD⊥OA时CD的值最小,
∵OA=13,AB=1,
∴OB=13-1=12,
∴BC=,
∴CD=5×2=10.
故答案为10.
【点睛】
本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)12
【解析】
(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;
(2)由题意可证△ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解.
【详解】
解:(1)证明:∵ 四边形ABCD为平行四边形,
∴ AB=CD,∠FAD=∠AFB
又∵ AF平分∠BAD,
∴ ∠FAD=∠FAB
∴ ∠AFB=∠FAB
∴ AB=BF
∴ BF=CD
(2)解:由题意可证△ABF为等边三角形,点E是AF的中点
在Rt△BEF中,∠BFA=60°,BE=,
可求EF=2,BF=4
∴ 平行四边形ABCD的周长为12
19、135° m+n
【解析】
试题分析:
(1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
(2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
(4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
试题解析:
(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
∴△EAC≌△BAD,
∴∠BDA=∠ECA;
(2)如下图,过点E作EG⊥CB交CB的延长线于点G,
∴∠EGB=90°,
∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
∴∠ABE=45°,BE=2,
∵∠ABC=75°,
∴∠EBG=180°-75°-45°=60°,
∴BG=1,EG=,
∴GC=BG+BC=4,
∴CE=,
∵△EAC≌△BAD,
∴BD=EC=;
(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
∵BD=EC,
∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
即当∠ABC=135°时,BD最大=;
(4)∵△ABD≌△AEC,
∴∠AEC=∠ABD,
∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
∴∠ABD+∠ABE+∠CEB=90°,
∴∠BFE=180°-90°=90°,
∴EF2+BF2=BE2,
又∵在等腰Rt△ABE中,BE2=2AE2,
∴2AE2=EF2+BF2.
点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
20、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
【解析】
分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
详解:(1)被随机抽取的学生共有14÷28%=50(人);
(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
如图所示:
(3)参与了4项或5项活动的学生共有×2000=720(人).
点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
21、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
22、(1)120件;(2)150元.
【解析】
试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
由题意可得:,解得,经检验是原方程的根.
(2)设每件衬衫的标价至少是元.
由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
由题意可得:
解得:,所以,,即每件衬衫的标价至少是150元.
考点:1、分式方程的应用 2、一元一次不等式的应用.
23、(1);(2),;(1);(2)
【解析】
试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.
∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.
列表得:
X
﹣1
0
1
2
1
y
0
1
2
1
0
图象如下.
(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.
∴抛物线与x轴的交点为(﹣1,0),(1,0).
∵y=﹣x2+2x+1=﹣(x﹣1)2+2
∴抛物线顶点坐标为(1,2).
(1)由图象可知:
当﹣1<x<1时,抛物线在x轴上方.
(2)由图象可知:
当x>1时,y的值随x值的增大而减小
考点: 二次函数的运用
24、 (1)见解析;(2).
【解析】
分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
详解:(1)连结OP、OA,OP交AD于E,如图,
∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
∴直线AB与⊙O相切;
(2)连结BD,交AC于点F,如图,
∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
∴DF=2,∴AD==2,∴AE=.
在Rt△PAE中,tan∠1==,∴PE=.
设⊙O的半径为R,则OE=R﹣,OA=R.
在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
∴R=,即⊙O的半径为.
点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
2023-2024学年福建省莆田市荔城区擢英中学七年级(上)期中数学试卷(含解析): 这是一份2023-2024学年福建省莆田市荔城区擢英中学七年级(上)期中数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
精品解析:福建省莆田市莆田擢英中学2021-2022学年九年级上学期期末数学试题(原卷版): 这是一份精品解析:福建省莆田市莆田擢英中学2021-2022学年九年级上学期期末数学试题(原卷版),共7页。试卷主要包含了 如图,点A在反比例函数y=等内容,欢迎下载使用。
福建省莆田市擢英中学2022-2023学年七下数学期末质量跟踪监视试题含答案: 这是一份福建省莆田市擢英中学2022-2023学年七下数学期末质量跟踪监视试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,如图,直线y=ax+b过点A等内容,欢迎下载使用。