年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年福建省长泰县中考猜题数学试卷含解析

    2021-2022学年福建省长泰县中考猜题数学试卷含解析第1页
    2021-2022学年福建省长泰县中考猜题数学试卷含解析第2页
    2021-2022学年福建省长泰县中考猜题数学试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建省长泰县中考猜题数学试卷含解析

    展开

    这是一份2021-2022学年福建省长泰县中考猜题数学试卷含解析,共20页。试卷主要包含了一、单选题,函数y=中自变量x的取值范围是等内容,欢迎下载使用。
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列四个几何体中,主视图与左视图相同的几何体有( )
    A.1个B.2个C.3个D.4个
    2.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )
    A.90°B.120°C.270°D.360°
    3.下列运算正确的是( )
    A.x2•x3=x6B.x2+x2=2x4
    C.(﹣2x)2=4x2D.( a+b)2=a2+b2
    4.如图,AB是的直径,点C,D在上,若,则的度数为
    A.B.C.D.
    5.下列运算中,正确的是( )
    A.(a3)2=a5B.(﹣x)2÷x=﹣x
    C.a3(﹣a)2=﹣a5D.(﹣2x2)3=﹣8x6
    6.已知二次函数的与的不符对应值如下表:
    且方程的两根分别为,,下面说法错误的是( ).
    A.,B.
    C.当时,D.当时,有最小值
    7.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )
    A.B.C.D.
    8.一、单选题
    如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
    A.5B.4C.3D.2
    9.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是( )
    A.50°B.60°C.70°D.80°
    10.函数y=中自变量x的取值范围是
    A.x≥0B.x≥4C.x≤4D.x>4
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)
    12.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是( )
    A.B.C.D.
    13.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
    14.小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由______.
    15.因式分解:4ax2﹣4ay2=_____.
    16.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.
    17.一个多边形的每个内角都等于150°,则这个多边形是_____边形.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,内接于,,的延长线交于点.
    (1)求证:平分;
    (2)若,,求和的长.
    19.(5分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?
    20.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
    21.(10分)解方程
    (1);(2)
    22.(10分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
    求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式的解集.
    23.(12分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
    求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.
    24.(14分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.
    (1)直接写出∠D与∠MAC之间的数量关系;
    (2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;
    ②如图2,直接写出AB,BD与BC之间的数量关系;
    (3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    解:①正方体的主视图与左视图都是正方形;
    ②球的主视图与左视图都是圆;
    ③圆锥主视图与左视图都是三角形;
    ④圆柱的主视图和左视图都是长方形;
    故选D.
    2、B
    【解析】
    先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.
    【详解】
    ∵图中是三个等边三角形,∠3=60°,
    ∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
    ∠BAC=180°-60°-∠1=120°-∠1,
    ∵∠ABC+∠ACB+∠BAC=180°,
    ∴60°+(120°-∠2)+(120°-∠1)=180°,
    ∴∠1+∠2=120°.
    故选B.
    【点睛】
    考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.
    3、C
    【解析】
    根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.
    【详解】
    A、x2•x3=x5,故A选项错误;
    B、x2+x2=2x2,故B选项错误;
    C、(﹣2x)2=4x2,故C选项正确;
    D、( a+b)2=a2+2ab+b2,故D选项错误,
    故选C.
    【点睛】
    本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键
    4、B
    【解析】
    试题解析:连接AC,如图,
    ∵AB为直径,
    ∴∠ACB=90°,


    故选B.
    点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.
    5、D
    【解析】
    根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.
    【详解】
    ∵(a3)2=a6,
    ∴选项A不符合题意;
    ∵(-x)2÷x=x,
    ∴选项B不符合题意;
    ∵a3(-a)2=a5,
    ∴选项C不符合题意;
    ∵(-2x2)3=-8x6,
    ∴选项D符合题意.
    故选D.
    【点睛】
    此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.
    6、C
    【解析】
    分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.
    【详解】
    A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y=1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=时,y有最小值,故此选项正确,不合题意.所以选C.
    【点睛】
    此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.
    7、C
    【解析】
    列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
    【详解】
    解:列表得:
    ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
    ∴恰好选择从同一个口进出的概率为=,
    故选C.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    8、B
    【解析】
    根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
    【详解】
    解:∵△ABC绕点A顺时针旋转 60°得到△AED,
    ∴AB=AE,∠BAE=60°,
    ∴△AEB是等边三角形,
    ∴BE=AB,
    ∵AB=1,
    ∴BE=1.
    故选B.
    【点睛】
    本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
    9、C
    【解析】
    连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。
    【详解】
    连接BC.
    ∵PA,PB是圆的切线

    在四边形中,



    所以
    ∵是直径


    故答案选C.
    【点睛】
    本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。
    10、B
    【解析】
    根据二次根式的性质,被开方数大于等于0,列不等式求解.
    【详解】
    根据题意得:x﹣1≥0,解得x≥1,
    则自变量x的取值范围是x≥1.
    故选B.
    【点睛】
    本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.
    二、填空题(共7小题,每小题3分,满分21分)
    11、2.9
    【解析】
    试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.
    考点:解直角三角形.
    12、A
    【解析】
    该班男生有x人,女生有y人.根据题意得:,
    故选D.
    考点:由实际问题抽象出二元一次方程组.
    13、.
    【解析】
    根据判别式的意义得到,然后解不等式即可.
    【详解】
    解:关于的一元二次方程有两个不相等的实数根,

    解得:,
    故答案为:.
    【点睛】
    此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
    14、不合理,样本数据不具有代表性
    【解析】
    根据表中所取的样本不具有代表性即可得到结论.
    【详解】
    不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).
    故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).
    【点睛】
    本题考查了统计表,认真分析表中数据是解题的关键.
    15、4a(x﹣y)(x+y)
    【解析】
    首先提取公因式4a,再利用平方差公式分解因式即可.
    【详解】
    4ax2-4ay2=4a(x2-y2)
    =4a(x-y)(x+y).
    故答案为4a(x-y)(x+y).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    16、3.
    【解析】
    试题解析:把(-1,0)代入得:
    2-3+k-2=0,
    解得:k=3.
    故答案为3.
    17、1
    【解析】
    根据多边形的内角和定理:180°•(n-2)求解即可.
    【详解】
    由题意可得:180°•(n-2)=150°•n,
    解得n=1.
    故多边形是1边形.
    三、解答题(共7小题,满分69分)
    18、 (1)证明见解析;(2)AC= , CD= ,
    【解析】
    分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
    本题解析:
    解:(1)证明:延长AO交BC于H,连接BO.
    ∵AB=AC,OB=OC,
    ∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
    又∵AB=AC,∴AO平分∠BAC.
    (2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
    ∴∠EBC=90°,BC⊥BE.
    ∵∠E=∠BAC,∴sinE=sin∠BAC.
    ∴=.∴CE=BC=10.
    ∴BE==8,OA=OE=CE=5.
    ∵AH⊥BC,∴BE∥OA.
    ∴=,即=,
    解得OD=.∴CD=5+=.
    ∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
    ∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
    在Rt△ACH中,AC===3.
    点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.
    19、裁掉的正方形的边长为2dm,底面积为12dm2.
    【解析】
    试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.
    试题解析:
    设裁掉的正方形的边长为xdm,
    由题意可得(10-2x)(6-2x)=12,
    即x2-8x+12=0,解得x=2或x=6(舍去),
    答:裁掉的正方形的边长为2dm,底面积为12dm2.
    20、(1)50;(2)16;(3)56(4)见解析
    【解析】
    (1)用A等级的频数除以它所占的百分比即可得到样本容量;
    (2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
    (4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
    【详解】
    (1)10÷20%=50(名)
    答:本次抽样调查共抽取了50名学生.
    (2)50-10-20-4=16(名)
    答:测试结果为C等级的学生有16名.
    图形统计图补充完整如下图所示:
    (3)700×=56(名)
    答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
    (4)画树状图为:
    共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
    所以抽取的两人恰好都是男生的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    21、(1),;(2),.
    【解析】
    (1)利用公式法求解可得;
    (2)利用因式分解法求解可得.
    【详解】
    (1)解:∵,,,
    ∴,
    ∴,
    ∴,;
    (2)解:原方程化为:,
    因式分解得:,
    整理得:,
    ∴或,
    ∴,.
    【点睛】
    本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
    22、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
    【解析】
    (1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
    【详解】
    (1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
    ∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
    ∴b=,k=﹣6
    ∴一次函数解析式y=﹣,反比例函数解析式y=.
    (2)根据题意得: ,
    解得: ,
    ∴S△ABF=×4×(4+2)=12
    (3)由图象可得:x<﹣2或0<x<4
    【点睛】
    本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
    23、(1)见解析(2)6
    【解析】
    (1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.
    (2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.
    【详解】
    解:(1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD∥BC
    ∴∠C+∠B=110°,∠ADF=∠DEC
    ∵∠AFD+∠AFE=110°,∠AFE=∠B,
    ∴∠AFD=∠C
    在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,
    ∴△ADF∽△DEC
    (2)∵四边形ABCD是平行四边形,
    ∴CD=AB=1.
    由(1)知△ADF∽△DEC,
    ∴,

    在Rt△ADE中,由勾股定理得:
    24、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC= 或.
    【解析】
    (1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,
    (2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,
    (3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.
    【详解】
    解:(1)相等或互补;
    理由:当点C,D在直线MN同侧时,如图1,
    ∵AC⊥CD,BD⊥MN,
    ∴∠ACD=∠BDC=90°,
    在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,
    ∵∠BAC+∠CAM=180°,
    ∴∠CAM=∠D;
    当点C,D在直线MN两侧时,如图2,
    ∵∠ACD=∠ABD=90°,∠AEC=∠BED,
    ∴∠CAB=∠D,
    ∵∠CAB+∠CAM=180°,
    ∴∠CAM+∠D=180°,
    即:∠D与∠MAC之间的数量是相等或互补;
    (2)①猜想:BD+AB=BC
    如图3,在射线AM上截取AF=BD,连接CF.
    又∵∠D=∠FAC,CD=AC
    ∴△BCD≌△FCA,
    ∴BC=FC,∠BCD=∠FCA
    ∵AC⊥CD
    ∴∠ACD=90°
    即∠ACB+∠BCD=90°
    ∴∠ACB+∠FCA=90°
    即∠FCB=90°
    ∴BF=
    ∵AF+AB=BF=
    ∴BD+AB=;
    ②如图2,在射线AM上截取AF=BD,连接CF,
    又∵∠D=∠FAC,CD=AC
    ∴△BCD≌△FCA,
    ∴BC=FC,∠BCD=∠FCA
    ∵AC⊥CD
    ∴∠ACD=90°
    即∠ACB+∠BCD=90°
    ∴∠ACB+∠FCA=90°
    即∠FCB=90°
    ∴BF=
    ∵AB﹣AF=BF=
    ∴AB﹣BD=;
    (3)①当点C,D在直线MN同侧时,如图3﹣1,
    由(2)①知,△ACF≌△DCB,
    ∴CF=BC,∠ACF=∠ACD=90°,
    ∴∠ABC=45°,
    ∵∠ABD=90°,
    ∴∠CBD=45°,
    过点D作DG⊥BC于G,
    在Rt△BDG中,∠CBD=45°,BD=,
    ∴DG=BG=1,
    在Rt△CGD中,∠BCD=30°,
    ∴CG=DG=,
    ∴BC=CG+BG=+1,
    ②当点C,D在直线MN两侧时,如图2﹣1,
    过点D作DG⊥CB交CB的延长线于G,
    同①的方法得,BG=1,CG=,
    ∴BC=CG﹣BG=﹣1
    即:BC= 或,
    【点睛】
    本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.
    月份
    六月
    七月
    八月
    用电量(千瓦时)
    290
    340
    360
    月平均用电量(千瓦时)
    330
    A
    B
    C
    D
    E
    A
    AA
    BA
    CA
    DA
    EA
    B
    AB
    BB
    CB
    DB
    EB
    C
    AC
    BC
    CC
    DC
    EC
    D
    AD
    BD
    CD
    DD
    ED
    E
    AE
    BE
    CE
    DE
    EE

    相关试卷

    福建省厦门市湖里区湖里实验中学2021-2022学年中考猜题数学试卷含解析:

    这是一份福建省厦门市湖里区湖里实验中学2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了实数的相反数是等内容,欢迎下载使用。

    福建省莆田涵江区四校联考2021-2022学年中考猜题数学试卷含解析:

    这是一份福建省莆田涵江区四校联考2021-2022学年中考猜题数学试卷含解析,共18页。试卷主要包含了如图,已知直线l1,下列各数中是有理数的是等内容,欢迎下载使用。

    福建省龙文区2021-2022学年中考猜题数学试卷含解析:

    这是一份福建省龙文区2021-2022学年中考猜题数学试卷含解析,共25页。试卷主要包含了定义运算“※”为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map