2021-2022学年北京市海淀区达标名校中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
2.cos60°的值等于( )
A.1 B. C. D.
3.计算:得( )
A.- B.- C.- D.
4.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
劳动时间(小时)
3
3.5
4
4.5
人 数
1
1
3
2
A.中位数是4,众数是4 B.中位数是3.5,众数是4
C.平均数是3.5,众数是4 D.平均数是4,众数是3.5
5.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为( )
A.83×105 B.0.83×106 C.8.3×106 D.8.3×107
6.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为( )
A.–1 B.2 C.1 D.–2
7.的化简结果为
A.3 B. C. D.9
8.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为( ).
A.3 B. C. D.
9.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有( )
A.3对 B.4对 C.5对 D.6对
10.当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是( )
A. B. C. D.x为任意实数
11.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )
A.4 B.3 C. D.
12.已知反比例函数下列结论正确的是( )
A.图像经过点(-1,1) B.图像在第一、三象限
C.y 随着 x 的增大而减小 D.当 x > 1时, y < 1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若m+=3,则m2+=_____.
14.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.
15.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).
16.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.
17.已知且,则=__________.
18.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.
20.(6分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.
21.(6分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
解:过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底边上的高也是底边上的中线)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性质)
即:BH=
又∵ (所作)
∴AH为线段 的垂直平分线
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
∴ (等边对等角)
22.(8分)先化简,再计算: 其中.
23.(8分)(5分)计算:.
24.(10分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.
(1)当m为何值时,方程有两个不相等的实数根;
(2)当m为何整数时,此方程的两个根都为负整数.
25.(10分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
(I)本次随机抽样调查的学生人数为 ,图①中的m的值为 ;
(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
26.(12分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.
(1)求证:OE=OF;
(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.
27.(12分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).
(1)t为何值时,△APQ与△AOB相似?
(2)当 t为何值时,△APQ的面积为8cm2?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,
所以﹣=﹣1,可得b=2a,
当x=﹣3时,y<0,
即9a﹣3b+c<0,
9a﹣6a+c<0,
3a+c<0,
∵a<0,
∴4a+c<0,
所以①选项结论正确;
②∵抛物线的对称轴是直线x=﹣1,
∴y=a﹣b+c的值最大,
即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm<a﹣b,
m(am+b)+b<a,
所以此选项结论不正确;
③ax2+(b﹣1)x+c=0,
△=(b﹣1)2﹣4ac,
∵a<0,c>0,
∴ac<0,
∴﹣4ac>0,
∵(b﹣1)2≥0,
∴△>0,
∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;
④由图象得:当x>﹣1时,y随x的增大而减小,
∵当k为常数时,0≤k2≤k2+1,
∴当x=k2的值大于x=k2+1的函数值,
即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,
ak4+bk2>a(k2+1)2+b(k2+1),
所以此选项结论不正确;
所以正确结论的个数是1个,
故选D.
2、A
【解析】
根据特殊角的三角函数值直接得出结果.
【详解】
解:cos60°=
故选A.
【点睛】
识记特殊角的三角函数值是解题的关键.
3、B
【解析】
同级运算从左向右依次计算,计算过程中注意正负符号的变化.
【详解】
-
故选B.
【点睛】
本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
4、A
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据中4出现的次数最多,众数为4,
∵共有7个人,
∴第4个人的劳动时间为中位数,
所以中位数为4,
故选A.
【点睛】
本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
5、C
【解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.
【详解】
830万=8300000=8.3×106.
故选C
【点睛】
本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.
6、C
【解析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.
【详解】
把x=1代入x2+mx+n=0,
代入1+m+n=0,
∴m+n=-1,
∴m2+2mn+n2=(m+n)2=1.
故选C.
【点睛】
本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.
7、A
【解析】
试题分析:根据二次根式的计算化简可得:.故选A.
考点:二次根式的化简
8、A
【解析】
连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.
【详解】
连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.
故选A.
【点睛】
本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.
9、D
【解析】
根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.
【详解】
图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,
△OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.
【点睛】
此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.
10、B
【解析】
分析:利用二次函数的增减性求解即可,画出图形,可直接看出答案.
详解:对称轴是:x=1,且开口向上,如图所示,
∴当x<1时,函数值y随着x的增大而减小;
故选B.
点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.
11、C
【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.
【详解】
设I的边长为x
根据题意有
解得或(舍去)
故选:C.
【点睛】
本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.
12、B
【解析】
分析:直接利用反比例函数的性质进而分析得出答案.
详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;
B.反比例函数y=,图象在第一、三象限,故此选项正确;
C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;
D.反比例函数y=,当x>1时,0<y<1,故此选项错误.
故选B.
点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、7
【解析】
分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.
详解:把m+=3两边平方得:(m+)2=m2++2=9,
则m2+=7,
故答案为:7
点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.
14、﹣1.
【解析】
试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.
解:∵扇形OAB的圆心角为90°,扇形半径为2,
∴扇形面积为:=π(cm2),
半圆面积为:×π×12=(cm2),
∴SQ+SM =SM+SP=(cm2),
∴SQ=SP,
连接AB,OD,
∵两半圆的直径相等,
∴∠AOD=∠BOD=45°,
∴S绿色=S△AOD=×2×1=1(cm2),
∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).
故答案为﹣1.
考点:扇形面积的计算.
15、③
【解析】
根据直线与点的位置关系即可求解.
【详解】
①点A在直线BC上是错误的;
②直线AB经过点C是错误的;
③直线AB,BC,CA两两相交是正确的;
④点B是直线AB,BC,CA的公共点是错误的.
故答案为③.
【点睛】
本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义.
16、
【解析】
如图,过点O作OC⊥AB的延长线于点C,
则AC=4,OC=2,
在Rt△ACO中,AO=,
∴sin∠OAB=.
故答案为.
17、
【解析】
分析:根据相似三角形的面积比等于相似比的平方求解即可.
详解:∵△ABC∽△A′B′C′,
∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,
∴AB:A′B′=1:.
点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.
18、π
【解析】
取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.
【详解】
解:如图,取的中点,取的中点,连接,,,
∵在等腰中,,点在以斜边为直径的半圆上,
∴,
∵为的中位线,
∴,
∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,
∴弧长,
故答案为:.
【点睛】
本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.
【解析】
(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;
(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.
【详解】
(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,
故答案为(20+2x),(40-x);
(2)、根据题意可得:(20+2x)(40-x)=1200,
解得:
即每件童装降价10元或20元时,平均每天盈利1200元;
(3)、(20+2x)(40-x)=2000, ,
∵此方程无解,
∴不可能盈利2000元.
【点睛】
本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.
20、证明见解析.
【解析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
【详解】
解:∵AD∥BC
∴∠ADB=∠DBC
∵DC⊥BC于点C,AE⊥BD于点E
∴∠C=∠AED=90°
又∵DB=DA
∴△AED≌△DCB(AAS)
∴AE=CD
【点睛】
本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
21、见解析
【解析】
根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.
【详解】
过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知),
AH⊥BC(所作),
∴DH=EH(等腰三角形底边上的高也是底边上的中线).
又∵BD=CE(已知),
∴BD+DH=CE+EH(等式的性质),
即:BH=CH.
∵AH⊥BC(所作),
∴AH为线段BC的垂直平分线.
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).
∴∠B=∠C(等边对等角).
【点睛】
本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;
22、;
【解析】
根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可.
【详解】
解:
=
=
=
=
当时,原式=.
【点睛】
此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.
23、.
【解析】
试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.
试题解析:原式==.
考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.
24、 (1) m≠1且m≠;(2) m=-1或m=-2.
【解析】
(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;
(2) 解方程,得:,,由m为整数,且方程的两个根均为负整数可得m的值.
【详解】
解:(1) △=-4ac=(3m-2)+24m=(3m+2)≥1
当m≠1且m≠时,方程有两个不相等实数根.
(2)解方程,得:,,
m为整数,且方程的两个根均为负整数,
m=-1或m=-2.
m=-1或m=-2时,此方程的两个根都为负整数
【点睛】
本题主要考查利用一元二次方程根的情况求参数.
25、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
【解析】
(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
(II)根据众数、中位数和平均数的定义计算可得;
(III)用总人数乘以样本中5天、6天的百分比之和可得.
【详解】
解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
故答案为150、14;
(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
平均数为=3.5天;
(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
26、(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.
【解析】
(1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;
(2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AB∥CD,OB=OD,
∴∠OAE=∠OCF,
在△OAE和△OCF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF;
(2)∵OE=OF,OB=OD,
∴四边形DEBF是平行四边形,
∵DE⊥AB,
∴∠DEB=90°,
∴四边形DEBF是矩形,
∴BD=EF,
∴OD=OB=OE=OF=BD,
∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE.
【点睛】
本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.
27、(1)t=秒;(1)t=5﹣(s).
【解析】
(1)利用勾股定理列式求出 AB,再表示出 AP、AQ,然后分∠APQ 和∠AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;
(1)过点 P 作 PC⊥OA 于 C,利用∠OAB 的正弦求出 PC,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:(1)∵点 A(0,6),B(8,0),
∴AO=6,BO=8,
∴AB= ==10,
∵点P的速度是每秒1个单位,点 Q 的速度是每秒1个单位,
∴AQ=t,AP=10﹣t,
①∠APQ是直角时,△APQ∽△AOB,
∴,
即,
解得 t=>6,舍去;
②∠AQP 是直角时,△AQP∽△AOB,
∴,
即,
解得 t=,
综上所述,t=秒时,△APQ 与△AOB相似;
(1)如图,过点 P 作 PC⊥OA 于点C,
则 PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),
∴△APQ的面积=×t×(10﹣t)=8,
整理,得:t1﹣10t+10=0,
解得:t=5+>6(舍去),或 t=5﹣,
故当 t=5﹣(s)时,△APQ的面积为 8cm1.
【点睛】
本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键.
北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
北京市海淀区首师大附重点达标名校2021-2022学年中考数学全真模拟试题含解析: 这是一份北京市海淀区首师大附重点达标名校2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是, “a是实数,”这一事件是,若分式的值为0,则x的值为等内容,欢迎下载使用。
2022届北京市顺义区达标名校中考数学模拟试题含解析: 这是一份2022届北京市顺义区达标名校中考数学模拟试题含解析,共18页。试卷主要包含了的值为等内容,欢迎下载使用。