


2021-2022学年甘肃省定西安定区七校联考中考数学押题试卷含解析
展开
这是一份2021-2022学年甘肃省定西安定区七校联考中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,﹣23的相反数是,这个数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )A. B. C. D.2.下列函数中,y关于x的二次函数是( )A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x23.如图是由5个相同的正方体搭成的几何体,其左视图是( )A. B.C. D.4.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在( )A.点C1处 B.点C2处 C.点C3处 D.点C4处5.下列关于统计与概率的知识说法正确的是( )A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数6.﹣23的相反数是( )A.﹣8 B.8 C.﹣6 D.67.对于两组数据A,B,如果sA2>sB2,且,则( )A.这两组数据的波动相同 B.数据B的波动小一些C.它们的平均水平不相同 D.数据A的波动小一些8.已知一元二次方程有一个根为2,则另一根为A.2 B.3 C.4 D.89.这个数是( )A.整数 B.分数 C.有理数 D.无理数10.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A.20% B.11% C.10% D.9.5%二、填空题(共7小题,每小题3分,满分21分)11.分解因式:a3-a= 12.二次根式在实数范围内有意义,x的取值范围是_____.13.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 .14.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.15.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.16.函数y=中,自变量x的取值范围是 17.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)如下表所示,有A、B两组数: 第1个数第2个数第3个数第4个数……第9个数……第n个数A组﹣6﹣5﹣2 ……58……n2﹣2n﹣5B组14710……25…… (1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.19.(5分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.20.(8分)解方程:1+21.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.22.(10分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是 人,补全频数分布直方图,扇形图中m= ;(2)本次调查数据中的中位数落在 组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?23.(12分)如图,在中,,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径.求证:与相切;当时,求的半径.24.(14分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.(1)求证:△ABC≌△AOD.(2)设△ACD的面积为,求关于的函数关系式.(3)若四边形ABCD恰有一组对边平行,求的值.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.2、B【解析】
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意; B. y=x(x﹣1)=x2-x,是二次函数,故符合题意;C. 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.3、A【解析】
根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.4、D【解析】如图:∵AB=5,, ∴D=4, ∵, ∴,∴AC=4,∵在RT△AD中,D,AD=8, ∴A=,故答案为D.5、B【解析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.6、B【解析】∵=﹣8,﹣8的相反数是8,∴的相反数是8,故选B.7、B【解析】试题解析:方差越小,波动越小. 数据B的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1.考点:根与系数的关系.9、D【解析】
由于圆周率π是一个无限不循环的小数,由此即可求解.【详解】解:实数π是一个无限不循环的小数.所以是无理数.
故选D.【点睛】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.10、C【解析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为.根据题意,得=1.解得,(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数. 二、填空题(共7小题,每小题3分,满分21分)11、【解析】a3-a=a(a2-1)=12、x≤1【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,1﹣x≥0,解得,x≤1,故答案为x≤1.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13、7【解析】试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.14、(2019,2)【解析】
分析点P的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.15、或10 【解析】
试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.16、x≥0且x≠1【解析】试题分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-1≠0,解可得答案.试题解析:根据题意可得x-1≠0;解得x≠1;故答案为x≠1.考点: 函数自变量的取值范围;分式有意义的条件.17、2﹣【解析】
过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论【详解】如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴ S阴影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力. 三、解答题(共7小题,满分69分)18、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析【解析】
(1)将n=4代入n2-2n-5中即可求解;(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.【详解】解:(1))∵A组第n个数为n2-2n-5,∴A组第4个数是42-2×4-5=3,故答案为3;(2)第n个数是.理由如下:∵第1个数为1,可写成3×1-2;第2个数为4,可写成3×2-2;第3个数为7,可写成3×3-2;第4个数为10,可写成3×4-2;……第9个数为25,可写成3×9-2;∴第n个数为3n-2;故答案为3n-2;(3)不存在同一位置上存在两个数据相等;由题意得,,解之得,由于是正整数,所以不存在列上两个数相等.【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键.19、(1)(2) , 【解析】【分析】(1)根据一元二次方程的定义可知k≠0,再根据方程有两个不相等的实数根,可知△>0,从而可得关于k的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.【详解】(1) 依题意,得,解得且;(2) ∵是小于9的最大整数,∴此时的方程为,解得,. 【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.20、无解.【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,经检验x=3是增根,分式方程无解.【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.21、树高为 5.5 米【解析】
根据两角相等的两个三角形相似,可得 △DEF∽△DCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 AB=AC+BC ,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D, ∴△DEF∽△DCB ∴ ,∵DE=0.4m,EF=0.2m,CD=8m,∴, ∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.22、(1)16、84°;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)【解析】
(1)根据百分比=所长人数÷总人数,圆心角=百分比,计算即可;(2)根据中位数的定义计算即可;(3)用一半估计总体的思考问题即可;【详解】(1)由题意总人数人,D组人数人;B组的圆心角为;(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人.【点睛】本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.23、 (1)证明见解析;(2).【解析】
(1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;(2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.【详解】(1)连接OM,则OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵点M在圆O上,∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,设⊙O的半径为r,则AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半径为.【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.24、(1)证明详见解析;(2)S=(m+1)2+(m>);(2)2或1.【解析】试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明△ABC≌△AOD;(2)过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,证明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);(2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.试题解析:(1)证明:∵A(0,5),B(2,1),∴AB==5,∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,,∴Rt△ABC≌Rt△AOD;(2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴,即,∴BC=(m+1),在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴=,而S△AOB=×5×2=,∴S=(m+1)2+(m>);(2)作BH⊥y轴于H,如图,当AB∥CD时,则∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB==2,tan∠ACB===,∴=2,解得m=1;当AD∥BC,则∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=,tan∠ACB=,∴=,解得m=2.综上所述,m的值为2或1.考点:相似形综合题.
相关试卷
这是一份2023-2024学年甘肃省定西安定区七校联考数学九上期末统考模拟试题含答案,共8页。
这是一份甘肃省定西市安定区2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了如图,在中,,下列运算正确的是,二次函数y=ax2+bx﹣2等内容,欢迎下载使用。
这是一份甘肃省定西安定区七校联考2021-2022学年中考数学适应性模拟试题含解析,共21页。试卷主要包含了已知点A,下列式子一定成立的是等内容,欢迎下载使用。
