2021-2022学年广西南宁四十九中学中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是( )
A. B. C. D.
2.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0
A.1个 B.2个 C.3个 D.4个
3.下列计算正确的是( )
A.a2•a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a10
4.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.③④
5.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A. B.
C. D.
6.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 B.42、38 C.40、42 D.42、40
7.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为( )
A. B. C. D.
8.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30° B.40° C.50° D.60°
9.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<-2或x>2 B.x<-2或0<x<2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
10.以下各图中,能确定的是( )
A. B. C. D.
11.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:
年龄(岁)
12
13
14
15
人数(个)
2
4
6
8
根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )
A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15
12.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O到点O′所经过的路径长为_____.
14.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.
A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.
B、按照小明的要求,小亮所搭几何体的表面积最小为__________.
15.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 .
16.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.
17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
18.分解因式: .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.
(1)求证:四边形是平行四边形;
(2)如果,求证四边形是矩形.
20.(6分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
21.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
22.(8分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)
23.(8分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?
(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?
24.(10分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,
当顶点C恰好落在y轴上的点D处时,点B落在点E处.
(1)求这个抛物线的解析式;
(2)求平移过程中线段BC所扫过的面积;
(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标.
25.(10分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
26.(12分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC.
(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.
27.(12分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
利用平行线的性质以及相似三角形的性质一一判断即可.
【详解】
解:∵AB⊥BD,CD⊥BD,EF⊥BD,
∴AB∥CD∥EF
∴△ABE∽△DCE,
∴,故选项B正确,
∵EF∥AB,
∴,
∴,故选项C,D正确,
故选:A.
【点睛】
考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、A
【解析】
如图,
且图像与y轴交于点,
可知该抛物线的开口向下,即,
①当时,
故①错误.
②由图像可知,当时,
∴
∴
故②错误.
③∵
∴,
又∵,
∴,
∴,
∴,
故③错误;
④∵,,
又∵,
∴.
故④正确.
故答案选A.
【点睛】
本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.
3、B
【解析】
根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.
【详解】
A、a2•a3=a5,错误;
B、(a2)3=a6,正确;
C、不是同类项,不能合并,错误;
D、a5+a5=2a5,错误;
故选B.
【点睛】
本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.
4、B
【解析】
由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.
【详解】
解:设AD=x,AB=2x
∵四边形ABCD是矩形
∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB
∴BC=x,CD=2x
∵CP:BP=1:2
∴CP=x,BP=x
∵E为DC的中点,
∴CE=CD=x,
∴tan∠CEP==,tan∠EBC==
∴∠CEP=30°,∠EBC=30°
∴∠CEB=60°
∴∠PEB=30°
∴∠CEP=∠PEB
∴EP平分∠CEB,故①正确;
∵DC∥AB,
∴∠CEP=∠F=30°,
∴∠F=∠EBP=30°,∠F=∠BEF=30°,
∴△EBP∽△EFB,
∴
∴BE·BF=EF·BP
∵∠F=∠BEF,
∴BE=BF
∴=PB·EF,故②正确
∵∠F=30°,
∴PF=2PB=x,
过点E作EG⊥AF于G,
∴∠EGF=90°,
∴EF=2EG=2x
∴PF·EF=x·2x=8x2
2AD2=2×(x)2=6x2,
∴PF·EF≠2AD2,故③错误.
在Rt△ECP中,
∵∠CEP=30°,
∴EP=2PC=x
∵tan∠PAB==
∴∠PAB=30°
∴∠APB=60°
∴∠AOB=90°
在Rt△AOB和Rt△POB中,由勾股定理得,
AO=x,PO=x
∴4AO·PO=4×x·x=4x2
又EF·EP=2x·x=4x2
∴EF·EP=4AO·PO.故④正确.
故选,B
【点睛】
本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.
5、D
【解析】
分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
【详解】
阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
即:a2﹣b2=(a+b)(a﹣b).
所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
故选:D.
【点睛】
考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
6、D
【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
故选D.
【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
7、D
【解析】
连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×=,因此可求得S阴影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.
故选D.
点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.
8、C
【解析】
由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
【详解】
∵∠B=70°,∠BAC=30°
∴∠ACB=80°
∵将△ABC绕点C顺时针旋转得△EDC.
∴AC=CE,∠ACE=∠ACB=80°
∴∠CAE=∠AEC=50°
故选C.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
9、D
【解析】
先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.
【详解】
解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.
10、C
【解析】
逐一对选项进行分析即可得出答案.
【详解】
A中,利用三角形外角的性质可知,故该选项错误;
B中,不能确定的大小关系,故该选项错误;
C中,因为同弧所对的圆周角相等,所以,故该选项正确;
D中,两直线不平行,所以,故该选项错误.
故选:C.
【点睛】
本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.
11、B
【解析】
根据加权平均数、众数、中位数的计算方法求解即可.
【详解】
,
15出现了8次,出现的次数最多,故众数是15,
从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.
故选B.
【点睛】
本题考查了平均数、众数与中位数的意义.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
12、B
【解析】
∵在正方形ABCD中, AB=,
∴AC=4,AD=DC=,∠DAP=∠DCA=45o,
当点Q在AD上时,PA=PQ,
∴DP=AP=x,
∴S= ;
当点Q在DC上时,PC=PQ
CP=4-x,
∴S=;
所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,
故选B.
【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
点O到点O′所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.
【详解】
解:∵扇形OAB的圆心角为30°,半径为1,
∴AB弧长=
∴点O到点O′所经过的路径长=
故答案为:
【点睛】
本题考查了弧长公式:.也考查了旋转的性质和圆的性质.
14、A, 18, 1
【解析】
A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;
B、分别得到前后面,上下面,左右面的面积,相加即可求解.
【详解】
A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,
∴该长方体需要小立方体4×32=36个,
∵小明用18个边长为1的小正方体搭成了一个几何体,
∴小亮至少还需36-18=18个小立方体,
B、表面积为:2×(8+8+7)=1.
故答案是:A,18,1.
【点睛】
考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.
15、18。
【解析】
根据二次函数的性质,抛物线的对称轴为x=3。
∵A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且AB∥x轴。
∴A,B关于x=3对称。∴AB=6。
又∵△ABC是等边三角形,∴以AB为边的等边三角形ABC的周长为6×3=18。
16、30
【解析】
根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.
【详解】
∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,
∴∠PBC=20°,∠PCM=50°,
∵∠PBC+∠P=∠PCM,
∴∠P=∠PCM-∠PBC=50°-20°=30°,
故答案为:30
【点睛】
本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.
17、
【解析】
解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
18、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
考点:提公因式法和应用公式法因式分解.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见解析;(2)见解析.
【解析】
(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;
(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.
【详解】
证明:(1)是的中点,
,
,
,
又,
,
,
又是的中线,
,
又,
四边形是平行四边形;
(2),
,
∴,即,
,
又,
,
又是的中线,
,
又四边形是平行四边形,
四边形是矩形.
【点睛】
本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.
20、(1)600(2)见解析
(3)3200(4)
【解析】
(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人.(2分)
(2)如图;…(5分)
(3)8000×40%=3200(人).
答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)
(4)如图;
(列表方法略,参照给分).…(8分)
P(C粽)==.
答:他第二个吃到的恰好是C粽的概率是.…(10分)
21、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
22、5.5米
【解析】
过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
在Rt△ACD中,∠CAD=30°,则AD=CD=x.
在Rt△BCD中,∠CBD=45°,则BD=CD=x.
由题意得,x﹣x=4,
解得:.
答:生命所在点C的深度为5.5米.
23、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
【解析】
(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;
(2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值.
(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.
【详解】
(1)y=300+30(60﹣x)=﹣30x+1.
(2)设每星期利润为W元,
W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.
∴x=55时,W最大值=2.
∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.
(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,
当x=52时,销售300+30×8=540,
当x=58时,销售300+30×2=360,
∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
【点睛】
本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.
24、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).
【解析】
分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;
(2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴.
(1)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答.
详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.
将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,
∴抛物线的解析式为y=x2﹣4x+1.
(2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.
∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).
∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.
∵抛物线y=x2﹣4x+1与y轴交于点B,∴B(0,1),∴BD=2.
∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,∴.
(1)联结CE.
∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即 .
(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即 a2=(a﹣2)2+5,解得: ,∴点.
同理,得点;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、.
综上所述:满足条件的点有),.
点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.
25、(1)证明见解析;(2)BH=.
【解析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;
(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.
【详解】
(1)连接OC,
∵AB是⊙O的直径,点C是的中点,
∴∠AOC=90°,
∵OA=OB,CD=AC,
∴OC是△ABD是中位线,
∴OC∥BD,
∴∠ABD=∠AOC=90°,
∴AB⊥BD,
∵点B在⊙O上,
∴BD是⊙O的切线;
(2)由(1)知,OC∥BD,
∴△OCE∽△BFE,
∴,
∵OB=2,
∴OC=OB=2,AB=4,,
∴,
∴BF=3,
在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,
∵S△ABF=AB•BF=AF•BH,
∴AB•BF=AF•BH,
∴4×3=5BH,
∴BH=.
【点睛】
此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.
26、证明见解析
【解析】
试题分析:由AB=AD,CB=CD结合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再证△ABF≌△ADF即可得到∠AFB=∠AFD,结合∠AFB=∠CFE即可得到∠AFD=∠CFE;
(2)由AB∥CD可得∠DCA=∠BAC结合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.
试题解析:
(1)在△ABC和△ADC中,
∵AB=AD,CB=CD,AC=AC,
∴△ABC≌△ADC,
∴∠BAC=∠DAC,
在△ABF和△ADF中,
∵AB=AD,∠BAC=∠DAC,AF=AF,
∴△ABF≌△ADF,
∴∠AFB=∠AFD.
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠ACD=∠CAD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形.
27、(1);(2)1<x<1.
【解析】
(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
(2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
【详解】
解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
∴n=﹣1+5,解得:n=1,
∴点A的坐标为(1,1).
∵反比例函数y=(k≠0)过点A(1,1),
∴k=1×1=1,
∴反比例函数的解析式为y=.
联立,解得:或,
∴点B的坐标为(1,1).
(2)观察函数图象,发现:
当1<x<1.时,反比例函数图象在一次函数图象下方,
∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
【点睛】
本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
新疆吉木乃初级中学2021-2022学年中考数学仿真试卷含解析: 这是一份新疆吉木乃初级中学2021-2022学年中考数学仿真试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列说法中正确的是等内容,欢迎下载使用。
广西南宁中学春季学期市级名校2021-2022学年中考数学仿真试卷含解析: 这是一份广西南宁中学春季学期市级名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
2021-2022学年重庆市中学中考数学仿真试卷含解析: 这是一份2021-2022学年重庆市中学中考数学仿真试卷含解析,共19页。试卷主要包含了定义,-5的相反数是等内容,欢迎下载使用。