初中华师大版1. 分式教案
展开
这是一份初中华师大版1. 分式教案,共5页。教案主要包含了做一做,例题,分式有意义的条件是分母不等于0,思考,小结,板书设计等内容,欢迎下载使用。
课程名称分 式一.学情分析两个整数的和、差、积仍为整数,但两个整数的商(除数不为0)却未必是整数,由此引进了分数;类似地,两个整式的和、差、积仍为整式,但是两个整式的商(除式不为0)也未必是整式,由此引进了分式。整式是分式学习的基础,分式是整式学习的继续,在此基础上也有了有理式和概念和运算,本章知识在中招考试中的体现是“先化简再求值”和试卷中第22题方程和函数的结合考查。二.内容分析本节课的主要内容是分式的概念,是后继学习的基础。三.目标分析1、掌握分式、有理式的概念,掌握分式是否有意义、分式的值是否等于0的识别方法。2、经历实际问题的解决过程,从中认识分式,并概括出分式的;3、能通过回忆分数的意义,类比地探索分式的意义及分式的值为某一特定情况的条件,渗透数学中的类比、分类等数学思想。四.重点难点重点:探索分式的意义及分式的值为某一特定情况的条件。难点:理解和掌握分式有意义、分式的值为0时的条件。五.教学资源及环境准备1、能通过回忆分数的意义,探索分式的意义;2、课件。六.教学过程教学过程设计教师活动学生活动 设计意图一、下列式子中,哪些是分式?哪些不是分式?1、 下列代数式哪些是整式,哪些不是整式? 二、做一做 (1)面积为2平方米的长方形的长是3米,则它的宽为_____米;(2)面积为S平方米的长方形的长为3米,则它的宽为_____米;(3)面积为S平方米的长方形的长是a米,则它的宽为________米;(4)一箱苹果售价p元,总重m千克,箱重n千克,则每千克苹果的售价是___元; 二、概括:形如(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中A叫做分式的分子,B叫做分式的分母。整式和分式统称有理式。即有理式 整式 分式思考:整式和分式的区别是什么? 三、例题:例1 例1.下列各有理式中,哪些是整式?哪些是分式?(1); (2); (3);(4); (5). 解:(2)(3)(5)属于整式的有;(1)(4)属于分式。四、大家都知道概念中括号里面的的内容非常重要,那为什么特别强调分母B中有字母呢?为什么要求B≠0呢?B=0会怎样呢?那么A可以为0吗?如果可以,需要满足什么条件呢? 注意:在分式中,分母的值不能是零.如果分母的值是零,则分式就没有意义。例如,在分式中,a≠0;在分式中,m≠n。 五、分式有意义的条件是分母不等于0。例2.当取什么值时,下列分式有意义?(1); (2).分析:要使分式有意义,分母不等于零.解:(1)分母≠0,即≠1.所以,当≠1时,分式有意义.(2)分母2≠0,即≠-.所以,当≠-时,分式有意义. 六、思考:分式的值是0的条件是什么?例3.若分式 =0,求x的值。 七、小结:本节课你有什么收获?在应用这些知识的时候应该注意什么? 七、练习:1、P5习题17.1第1、2、题;2、判断下列各式哪些是整式,哪些是分式?9x+4 , , , , ,,3、 当x取何值时,下列分式有意义?(1) (2) (3) 4、当x为何值时,分式的值为0?(1) (2) (3) 引导学生回忆整式的内容 小组合作,根据问题的答案,对其分类,并阐述分类的原因,进而引出分式的概念 对学生交流的结果进行总结,引出分式和有理式的概念。 对于A的结果我有疑问,你有同样的疑惑吗?或者说你知道我的疑惑是什么吗? 提醒学生《π》是常数 教师质疑,请学生帮忙 类比分数、除法运算,使学生明白为什么分式的分母不能为0? 分式有意义,只需 分式的分母不等于0,教师规范解题格式(对于个别学生的要求降低,会解决问题即可) 分式的值为0的条件是分式有意义,也就是只有分式的分子等于0,分式的值才会等于0. 请学生展示结果 巩固本节课的知识点,强化解决解题策略 不是整式,那它属于什么式子呢? 依据自己掌握的知识进行分类,并相互交流。 小组合作交流:分式与整式的区别是什么? 学生独立完成例1.的解答。启发学生发现问题和敢于提出问题 学生讨论思考 学生口述解题过程 学生独立完成,组内解决疑难 观察他人,剖析自己,及时补充和修正自己。 为学生总结分式的概念做铺垫 体会分类的数学思想,做到知因知果。 培养学生分析问题和解决问题的能力。 学以致用,敢于质疑。 引出本节课要解决的练习题 遇到不理解的或者是自己不明白的,不妨来举个例子。 分层教学,让个别学生感到收获的喜悦和学习的轻松 使学生明白:分式只有在有意义的条件下,才能去特定值,如果没有意义,我们不做进一步的研究(赋予它特定的值) 培养学生解决问题和分析的能力。 通过练习检验学生本节课知识掌握的情况,分式取特定的值,即分式方程,为下一步学习分式方程做足充分的准备。 七、评价与作业设计 书面作业:P6习题17.1第3题;课下作业:必做题:练习册第1——11题; 选做题:练习册第11——13题;八、板书设计 16.1.1 分式 1、分式的概念2、有理式3、分式与整式的区别 例2的解题过程4、分式有意义的条件5、分式=0的条件
相关教案
这是一份初中华师大版2. 分式的基本性质教案设计,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
这是一份初中1. 分式教案,共2页。教案主要包含了设疑自探,解疑合探,质疑再探,运用拓展等内容,欢迎下载使用。
这是一份2021学年2. 分式的基本性质教学设计,共3页。教案主要包含了教学目标,重点,课堂引入,例题讲解,随堂练习,课后练习,答案等内容,欢迎下载使用。