初中数学鲁教版 (五四制)七年级下册第八章 平行线的有关证明4 平行线的判定定理教案配套课件ppt
展开8.4平行线的判定定理
1.了解证明的基本步骤和书写格式。2.会根据已学的基本事实或定理来证明两直线平行。
学校门前的五一路与中原路平行。作为工程师的你,如何验证这个结论?
1.平行线的判定条件:(1)两条直线被第三条直线所截,如果________________,则两直线平行。 简述为:_____________,两直线平行。(基本事实)(2)两条直线被第三条直线所截,如果________________,则两直线平行。 简述为:_____________,两直线平行。(3)两条直线被第三条直线所截,如果________________,则两直线平行。 简述为:_____________,两直线平行。
已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b.
证明:∵ ∠1=∠2 (已知),
∠1=∠3 (对顶角相等).
∴∠2=∠3 (等量代换).
∴ a∥b(同位角相等,两直线平行).
判定定理一:内错角相等,两直线平行
几何语言:∵ ∠1=∠2, ∴ a∥b
已知:如图,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1+∠2=180°.求证:a∥b.
证明:∵ ∠1+∠2=180°( ),
∠3+∠2=180° ( ),
∠3= 1800 -∠2( ).
∴∠1=∠3( ).
∴ a∥b( ).
∴∠1= 1800 -∠2( ).
判定定理二:同旁内角互补,两直线平行
几何语言:∵∠1+∠2=1800 ∴ a∥b.
1.如图,下列推理是否正确?为什么?(1)(2)(3)(4)
已知:如图,直线a,b被直线c所截。且∠1+ ∠2=180°求证:a∥b.你有几种证明方法?
已知,如图,BP交CD于点P, ∠ABP+∠BPC=180 º. 求证:EB∥PF
如图:直线AB、CD都和AE相交,且∠1+∠A=180º .求证:AB//CD
( )
同旁内角互补,两直线平行
证明:∵∠1+∠3=180 º(平角的定义) ∠2+∠3=180 º( )
以下是小明利用三角板和直尺做已知直线的平行线的方法,他做的对吗?依据是什么?
小杰用如图所示的方法作出了平行线,你认为他的作法对吗?为什么?
通过这个操作活动,得到了什么结论?
公理:同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b.
判定定理1:内错角相等,两直线平行.∵ ∠1=∠2, ∴ a∥b.
判定定理2:同旁内角互补,两直线平行. ∵∠1+∠2=1800 , ∴ a∥b.
这里的结论,以后可以直接运用.
已知:如图,在△ABC中,∠A=38°,BC边绕点C按逆时针方向旋转一周回到原来的位置.在旋转的过程中,是否有某一位置使CB′∥AB ?如果有这样的位置,请你画出示意图,并写出判断它们平行的理由.
平行线判定定理一 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(简记为:内错角相等,两直线平行)
初中数学鲁教版 (五四制)七年级下册4 平行线的判定定理集体备课ppt课件: 这是一份初中数学鲁教版 (五四制)七年级下册4 平行线的判定定理集体备课ppt课件,共11页。
数学鲁教版 (五四制)4 平行线的判定定理公开课ppt课件: 这是一份数学鲁教版 (五四制)4 平行线的判定定理公开课ppt课件,文件包含85《平行线的性质定理》课件ppt、84《平行线的判定定理》课件ppt、84《平行线的判定定理》教案doc、85《平行线的性质定理》教案doc等4份课件配套教学资源,其中PPT共36页, 欢迎下载使用。
2020-2021学年第十一章 一元一次不等式和一元一次不等式组1 不等关系多媒体教学课件ppt: 这是一份2020-2021学年第十一章 一元一次不等式和一元一次不等式组1 不等关系多媒体教学课件ppt,共21页。PPT课件主要包含了走进生活感受“不等”,t6000,a>0,y-80,a-b2≥0,1a是正数,我选择我喜欢,自负≠自信,巧干>苦干,昨天<今天等内容,欢迎下载使用。