![初三相似复习学案第1页](http://img-preview.51jiaoxi.com/2/3/13037730/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初三相似复习学案第2页](http://img-preview.51jiaoxi.com/2/3/13037730/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初三相似复习学案第3页](http://img-preview.51jiaoxi.com/2/3/13037730/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初三相似复习学案
展开
这是一份初三相似复习学案,共7页。学案主要包含了选择题等内容,欢迎下载使用。
三角形相似的“基本图形”:(1)平行线型: 如图1、图2,若DE∥BC,则△ADE∽△ABC,形象地说图1为“A”型,图2为“X”型,故称之为平行线型的基本图形. (2)相交线型:如图3、图4,若∠AED=∠B,则△ADE∽△ABC,称之为相交线型的基本图形. 图3 图4(3)母子型:将图5中的DE向下平移至点C,则得图5,有△ACD∽△ABC,称之为“子母”型的基本图形.特别地,令∠ACB=,CD则为斜边上高(如图6), 则有△ACD∽△ABC∽△CBD.(4)旋转型:将图7中的△ADE绕点A旋转一定角度,则得图11,称之为旋转型的基本图形. 2. 怎样寻找相似三角形:证明线段的比例式(或等积式)的常用方法是利用相似三角形,常见的几种策略:(1)三点定型法,基本方法就是找出与结论中的线段有关的两个三角形,然后证明这两个三角形相似,利用“相似三角形对应边成比例”推出结论;(2)等线段代换法,有时求证比例式中的四条线段都在图形的同一条直线上,不能组成三角形,或即使四条线段能构成两个三角形,但这两个三角形根本不相似,这时,我们可以根据已知条件找到与比例式中某条线段相等的一条线段来代替,再用三点定型法确定相似三角形;(3)等式代换法,当用三点定型法不能确定三角形,或虽然能确定三角形,但这两个三角形不可能相似,同时也无等线段代换时,可考虑用等比代换法,即用“中间比”进行转换,然后再用“三点定型法”确定三角形.一、选择题:1.(2018•毕节市)在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为( )A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)2.(2018•巴中)如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:①=;②=;③=;④=.其中正确的个数有( )A.1个 B.2个 C.3个 D.4个 3.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为( )A.2:5 B.3:5 C.9:25 D.4:254.(2018•恩施州)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为( )A.6 B.8 C.10 D.125(2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为( )A.5 B.4 C.3 D.26.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于( )A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:107.(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为( )A.5 B.4 C.3 D.2 8.已知平行四边形ABCD中,E,F分别是AB,AD上的点,EF与对角线AC交于P,若=,=,则的值为( )A. B. C. D.二.填空题1.(2018•牡丹江)矩形ABCD中,AB=6,AD=8,点M在对角线AC上,且AM:MC=2:3,过点M作EF⊥AC交AD于点E,交BC于点F.在AC上取一点P,使∠MEP=∠EAC,则AP的长为 .2.(2017•内江)如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM=AB.若四边形ABCD的面积为,则四边形AMCD的面积是 .3.(2018•巴彦淖尔)如图,⊙O为等腰三角形ABC的外接圆,AB是⊙O的直径,AB=12,P为上任意一点(不与点B,C重合),直线CP交AB的延长线于点Q,⊙O在点P处的切线PD交BQ于点D,则下列结论:①若∠PAB=30°,则的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在上的位置如何变化,CP•CQ=108.其中正确结论的序号为 . 4.(2018•青海)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则= . 5.(2018•常州)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是 .6.(2018•贵阳)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为 .7.(2018•葫芦岛)如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则= .8.(2018•沈阳)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH= . 三,简答题1.(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度. 2.(2018•乐山)如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值. 3.(2018•苏州)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,= ;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示. 5.(2018•包头)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.
相关学案
这是一份初三数学期中复习笔记纯手写学案,共1页。
这是一份中考一轮综合复习导学案(16)全等与相似,共9页。学案主要包含了知识网络,要点梳理,2021中考汇编等内容,欢迎下载使用。
这是一份初中数学苏科版九年级下册6.4 探索三角形相似的条件学案,共6页。学案主要包含了学习目标 ,知识梳理,典例精讲,课堂小结与反思,巩固练习,课堂作业,课后练习等内容,欢迎下载使用。