搜索
    上传资料 赚现金
    新人教A版高中数学必修第一册第四章指数函数与对数函数2.1指数函数的概念学案
    立即下载
    加入资料篮
    新人教A版高中数学必修第一册第四章指数函数与对数函数2.1指数函数的概念学案01
    新人教A版高中数学必修第一册第四章指数函数与对数函数2.1指数函数的概念学案02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第一册4.1 指数导学案及答案

    展开
    这是一份人教A版 (2019)必修 第一册4.1 指数导学案及答案,共5页。


    [问题] (1)某种细胞每过30分钟便由1个分裂成2个,则经过2个小时,这种细胞能由1个分裂成多少个?
    (2)如果将上述问题改为“经过x次分裂,这种细胞能由1个分裂成y个”,你能用分裂次数x表示个数y吗?



    知识点一 指数函数的概念
    一般地,函数y=eq \a\vs4\al(ax)(a>0,且a≠1)叫做指数函数,其中x是自变量,定义域是eq \a\vs4\al(R).
    eq \a\vs4\al()
    对指数函数概念的再理解

    为什么指数函数的底数a>0,且a≠1?
    提示:①如果a=0,当x>0时,ax恒等于0,没有研究的必要;当x≤0时,ax无意义.
    ②如果a<0,例如y=(-4)x,这时对于x=eq \f(1,2),eq \f(1,4),…,该函数无意义.
    ③如果a=1,则y=1x是一个常量,没有研究的价值.
    为了避免上述各种情况,所以规定a>0,且a≠1.
    1.判断正误.(正确的画“√”,错误的画“×”)
    (1)y=x2是指数函数.( )
    (2)指数函数y=ax中,a可以为负数.( )
    (3)y=2x-1是指数函数.( )
    答案:(1)× (2)× (3)×
    2.若函数f(x)是指数函数,且f(2)=2,则f(x)=________.
    解析:设f(x)=ax(a>0,a≠1),∵f(2)=2,∴a2=2,∴a=eq \r(2),即f(x)=(eq \r(2))x.
    答案:(eq \r(2))x
    知识点二 指数型函数模型
    形如y=kax(k为非零常数,a>0,且a≠1)的函数为指数型函数模型.
    某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初始溶液含杂质2%,每过滤一次可使杂质含量减少eq \f(1,3).
    (1)写出杂质含量y与过滤次数n的函数关系式;
    (2)过滤7次后的杂质含量是多少?过滤8次后的杂质含量是多少?至少应过滤几次才能使产品达到市场要求?
    解:(1)过滤1次后的杂质含量为eq \f(2,100)×eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)))=eq \f(2,100)×eq \f(2,3);
    过滤2次后的杂质含量为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,100)×\f(2,3)))×eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)))=eq \f(2,100)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(2);
    过滤3次后的杂质含量为eq \b\lc\[\rc\](\a\vs4\al\c1(\f(2,100)×\b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))\s\up12(2)))×eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)))=eq \f(2,100)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(3);

    过滤n次后的杂质含量为eq \f(2,100)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(n)(n∈N*).
    故y与n的函数关系式为y=eq \f(1,50)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(n)(n∈N*).
    (2)由(1)知当n=7时,y=eq \f(1,50)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(7)=eq \f(64,54 675)>eq \f(1,1 000),
    当n=8时,y=eq \f(1,50)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(8)=eq \f(128,164 025)[例1] (1)下列函数中是指数函数的是________(填序号).
    ①y=2·(eq \r(2))x;②y=2x-1;③y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)))eq \s\up12(x).
    (2)若函数y=(k+2)ax+2-b(a>0,且a≠1)是指数函数,则k=________,b=________.
    [解析] (1)①中指数式(eq \r(2))x的系数不为1,故不是指数函数;②中y=2x-1=eq \f(1,2)·2x,指数式2x的系数不为1,故不是指数函数;③是指数函数.
    (2)根据指数函数的定义,得eq \b\lc\{(\a\vs4\al\c1(k+2=1,,2-b=0,))解得eq \b\lc\{(\a\vs4\al\c1(k=-1,,b=2.))
    [答案] (1)③ (2)-1 2
    eq \a\vs4\al()
    判断一个函数是指数函数的方法
    (1)看形式:判断其解析式是否符合y=ax(a>0,且a≠1)这一结构特征;
    (2)明特征:看是否具备指数函数解析式具有的三个特征.只要有一个特征不具备,该函数就不是指数函数.
    [跟踪训练]
    若函数y=(2a-1)x(x是自变量)是指数函数,则a的取值范围是( )
    A.(0,1)∪(1,+∞) B.[0,1)∪(1,+∞)
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1))∪(1,+∞) D.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(1,2),+∞))
    解析:选C 依题意得2a-1>0,且2a-1≠1,解得a>eq \f(1,2),且a≠1,故选C.
    [例2] (链接教科书第114页例1)若函数f(x)是指数函数,且f(2)=9,则f(x)=________.
    [解析] 由题意设f(x)=ax(a>0且a≠1),因为f(2)=a2=9,所以a=3,所以f(x)=3x.
    [答案] 3x
    eq \a\vs4\al()
    1.求指数函数的解析式时,一般采用待定系数法,即先设出函数的解析式,然后利用已知条件,求出解析式中的参数,从而得到函数的解析式,其中掌握指数函数的概念是解决这类问题的关键.
    2.求指数函数的函数值的关键是求指数函数的解析式.
    [跟踪训练]
    已知函数f(x)为指数函数,且feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)))=eq \f(\r(3),9),求f(-2)的值.
    解:设f(x)=ax(a>0且a≠1),
    由feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)))=eq \f(\r(3),9)得,a-eq \f(3,2)=eq \f(\r(3),9),
    所以a=3,
    又f(-2)=a-2,
    所以f(-2)=3-2=eq \f(1,9).
    [例3] (链接教科书第114页例2)某林区2020年木材蓄积量为200万立方米,由于采取了封山育林、严禁采伐等措施,使木材蓄积量的年平均递增率能达到5%.
    若经过x年后,该林区的木材蓄积量为y万立方米,求y=f(x)的表达式,并求此函数的定义域.
    [解] 现有木材蓄积量为200万立方米,经过1年后木材蓄积量为200+200×5%=200(1+5%).
    经过2年后木材蓄积量为:200(1+5%)+200(1+5%)×5%=200×(1+5%)2.
    ∴经过x年后木材蓄积量为200(1+5%)x.
    ∴y=f(x)=200(1+5%)x.函数的定义域为x∈N*.
    eq \a\vs4\al()
    指数函数在实际问题中的应用
    (1)利用数学方法解决实际问题时,应准确读懂题意,从实际问题中提取出模型转化为数学问题;
    (2)在实际问题中,经常会遇到指数增长模型:设基数为N,平均增长率为p,则对于经过时间x后的总量y可以用y=N(1+p)x来表示,这是非常有用的函数模型.
    [跟踪训练]
    某地区2010年年底的人口数量为500万,人均住房面积为6平方米,若该地区的人口年平均增长率为1%,要使2021年年底该地区的人均住房面积至少为7平方米,则平均每年新增住房面积至少________万平方米(精确到1万平方米,参考数据:1.019≈1.093 7,1.0110≈1.104 6,1.0111≈1.115 7).
    解析:设平均每年新增住房面积x万平方米,则eq \f(500×6+11x,500×(1+1%)11)≥7,解得x≥82.27≈82.即平均每年新增住房面积至少82万平方米.
    答案:82
    1.下列各函数中,是指数函数的是( )
    A.y=(-3)x B.y=-3x
    C.y=3x-1 D.y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))eq \s\up12(x)
    解析:选D 根据指数函数的定义知,D正确.
    2.若函数y=(m2-m-1)mx是指数函数,则m等于( )
    A.-1或2 B.-1
    C.2 D.eq \f(1,2)
    解析:选C 由题意得eq \b\lc\{(\a\vs4\al\c1(m2-m-1=1,
    m>0且m≠1,))解得m=2.故选C.
    3.已知函数f(x)=ax(a>0,且a≠1),f(2)=4,则函数f(x)的解析式是( )
    A.f(x)=2x B.f(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(x)
    C.f(x)=4x D.f(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))eq \s\up12(x)
    解析:选A 由f(2)=4得a2=4,又a>0,且a≠1,所以a=2,即f(x)=2x.故选A.
    4.若函数y=(4-3a)x是指数函数,则实数a的取值范围为________.
    解析:若函数y=(4-3a)x是指数函数,则4-3a>0且4-3a≠1,所以a答案:(-∞,1)∪eq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(4,3)))
    5.一种放射性物质不断变化为其他物质,每经过一年,剩余物质的质量约是原来的eq \f(4,5),则经过________年,剩余物质的质量是原来的eq \f(64,125).
    解析:经过一年,剩余物质的质量约是原来的eq \f(4,5);经过两年,剩余物质的质量约是原来的eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,5)))eq \s\up12(2);经过三年,剩余物质的质量约是原来的eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,5)))eq \s\up12(3)=eq \f(64,125).
    答案:三
    新课程标准解读
    核心素养
    1.通过具体实例,了解指数函数的实际意义
    数学抽象
    2.理解指数函数的概念
    数学建模
    指数函数的概念
    求指数函数的解析式或函数值
    指数函数型的实际应用
    相关学案

    人教A版 (2019)必修 第一册4.2 指数函数学案及答案: 这是一份人教A版 (2019)必修 第一册4.2 指数函数学案及答案,共5页。学案主要包含了学习目标,问题探究1,问题探究2等内容,欢迎下载使用。

    人教A版 (2019)必修 第一册4.4 对数函数导学案: 这是一份人教A版 (2019)必修 第一册4.4 对数函数导学案,共5页。

    高中数学人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.3 对数导学案: 这是一份高中数学人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.3 对数导学案,共7页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新人教A版高中数学必修第一册第四章指数函数与对数函数2.1指数函数的概念学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map