2021-2022学年河北省承德市兴隆县中考一模数学试题含解析
展开1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4
2.抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
3.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.5D.6
4.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是( )
A.60°B.35°C.30.5°D.30°
5.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是( )
A.50π﹣48B.25π﹣48C.50π﹣24D.
6.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为( )
A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)
7.如图: 在中,平分,平分,且交于,若,则等于( )
A.75B.100 C.120 D.125
8.两个有理数的和为零,则这两个数一定是( )
A.都是零B.至少有一个是零
C.一个是正数,一个是负数D.互为相反数
9.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )
A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2
10.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
关于这组数据,下列说法正确的是( )
A.中位数是2B.众数是17C.平均数是2D.方差是2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,AB是⊙O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.
12.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_____.
13.如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 ___________ .
14.如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为 .
15.已知:=,则的值是______.
16.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).
三、解答题(共8题,共72分)
17.(8分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.
18.(8分)车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率.
19.(8分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
租车公司:按日收取固定租金80元,另外再按租车时间计费.
共享汽车:无固定租金,直接以租车时间(时)计费.
如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:
(1)分别求出y1、y2与x的函数表达式;
(2)请你帮助小丽一家选择合算的租车方案.
20.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 人;
(2)图2中α是 度,并将图1条形统计图补充完整;
(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;
(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
21.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.
征文比赛成绩频数分布表
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是 ;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
22.(10分)观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
…第④个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
23.(12分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
(1)求A,B两点间的距离(结果精确到0.1km).
(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cs34°=0.83,tan34°=0.1.)
24.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.
【详解】
解:①由图象可知,抛物线开口向下,所以①正确;
②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
剩下的选项中都有③,所以③是正确的;
易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.
故选:B.
【点睛】
本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.
2、C
【解析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
【详解】
∵抛物线解析式为y=3(x-2)2+5,
∴二次函数图象的顶点坐标是(2,5),
故选C.
【点睛】
本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
3、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
4、D
【解析】
根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
【详解】
连接OB,
∵点B是弧的中点,
∴∠AOB= ∠AOC=60°,
由圆周角定理得,∠D= ∠AOB=30°,
故选D.
【点睛】
此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
5、B
【解析】
设以AB、AC为直径作半圆交BC于D点,连AD,如图,
∴AD⊥BC,
∴BD=DC=BC=8,
而AB=AC=10,CB=16,
∴AD===6,
∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,
=π•52﹣•16•6,
=25π﹣1.
故选B.
6、A
【解析】
分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).
详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),
∴点O是AC的中点,
∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
∴BD经过点O,
∵B的坐标为(﹣2,﹣2),
∴D的坐标为(2,2),
故选A.
点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
7、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
【详解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.
【点睛】
本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
8、D
【解析】
解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.
9、D
【解析】
解:∵直线l1与x轴的交点为A(﹣1,0),
∴﹣1k+b=0,∴,解得:.
∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,
∴,
解得0<k<1.
故选D.
【点睛】
两条直线相交或平行问题;一次函数图象上点的坐标特征.
10、A
【解析】
试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50=;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
∴这组数据的中位数为2,
故选A.
考点:1.方差;2.加权平均数;3.中位数;4.众数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.
【详解】
解:连接OE,OF、EF,
∵DE是切线,
∴OE⊥DE,
∵∠C=30°,OB=OE=2,
∴∠EOC=60°,OC=2OE=4,
∴CE=OC×sin60°=
∵点E是弧BF的中点,
∴∠EAB=∠DAE=30°,
∴F,E是半圆弧的三等分点,
∴∠EOF=∠EOB=∠AOF=60°,
∴OE∥AD,∠DAC=60°,
∴∠ADC=90°,
∵CE=AE=
∴DE=,
∴AD=DE×tan60°=
∴S△ADE
∵△FOE和△AEF同底等高,
∴△FOE和△AEF面积相等,
∴图中阴影部分的面积为:S△ADE﹣S扇形FOE
故答案为
【点睛】
此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.
12、5.5×1.
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
详解:5.5亿=5 5000 0000=5.5×1,
故答案为5.5×1.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
13、.
【解析】
利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.
【详解】
∵a1=4
a2=,
a3=,
a4=,
…
数列以4,−三个数依次不断循环,
∵2019÷3=673,
∴a2019=a3=,
故答案为:.
【点睛】
此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.
14、
【解析】
分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.
由图象可知,此时.
15、–
【解析】
根据已知等式设a=2k,b=3k,代入式子可求出答案.
【详解】
解:由,可设a=2k,b=3k,(k≠0),
故:,
故答案:.
【点睛】
此题主要考查比例的性质,a、b都用k表示是解题的关键.
16、<
【解析】
由抛物线开口向下,则a<0,抛物线与y轴交于y轴负半轴,则c<0,对称轴在y轴左侧,则b<0,因此可判断a+b+2c与0的大小
【详解】
∵抛物线开口向下
∴a<0
∵抛物线与y轴交于y轴负半轴,
∴c<0
∵对称轴在y轴左侧
∴﹣<0
∴b<0
∴a+b+2c<0
故答案为<.
【点睛】
本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.
三、解答题(共8题,共72分)
17、2.
【解析】
根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
【详解】
解:∵AD是△ABC的中线,且BC=10,
∴BD=BC=1.
∵12+122=22,即BD2+AD2=AB2,
∴△ABD是直角三角形,则AD⊥BC,
又∵CD=BD,
∴AC=AB=2.
【点睛】
本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
18、(1);(2).
【解析】
试题分析:(1)根据概率公式即可得到结论;
(2)画出树状图即可得到结论.
试题解析:(1)选择 A通道通过的概率=,
故答案为;
(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.
19、(1)y1=kx+80,y2=30x;(2)见解析.
【解析】
(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;
(2)分y1=y2,y1<y2,y1>y2三种情况分析即可.
【详解】
解:(1)由题意,设y1=kx+80,
将(2,110)代入,得110=2k+80,解得k=15,
则y1与x的函数表达式为y1=15x+80;
设y2=mx,
将(5,150)代入,得150=5m,解得m=30,
则y2与x的函数表达式为y2=30x;
(2)由y1=y2得,15x+80=30x,解得x=;
由y1<y2得,15x+80<30x,解得x>;
由y1>y2得,15x+80>30x,解得x<.
故当租车时间为小时时,两种选择一样;
当租车时间大于小时时,选择租车公司合算;
当租车时间小于小时时,选择共享汽车合算.
【点睛】
本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.
20、(1)40;(2)54,补图见解析;(3)330;(4).
【解析】
(1)根据由自主学习的时间是1小时的人数占30%,可求得本次调查的学生人数;
(2),由自主学习的时间是0.5小时的人数为40×35%=14;
(3)求出这40名学生自主学习时间不少于1.5小时的百分比乘以600即可;
(4)根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.
【详解】
(1)∵自主学习的时间是1小时的有12人,占30%,
∴12÷30%=40,
故答案为40;
(2),故答案为54;
自主学习的时间是0.5小时的人数为40×35%=14;
补充图形如图:
(3)600×=330;
故答案为330;
(4)画树状图得:
∵共有12种等可能的结果,选中小亮A的有6种可能,
∴P(A)=.
21、(1)0.2;(2)答案见解析;(3)300
【解析】
第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.
【详解】
解:(1)1﹣0.38﹣0.32﹣0.1=0.2,
故答案为0.2;
(2)10÷0.1=100,
100×0.32=32,100×0.2=20,
补全征文比赛成绩频数分布直方图:
(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).
【点睛】
掌握有关频率和频数的相关概念和计算,是解答本题的关键.
22、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
【解析】
(1)根据①②③的规律即可得出第④个等式;
(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
【详解】
(1)∵22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
∴第④个等式为52﹣2×4=42+1,
故答案为:52﹣2×4=42+1,
(2)第n个等式为(n+1)2﹣2n=n2+1.
(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
【点睛】
本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
23、(1)1.7km;(2)8.9km;
【解析】
(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.
【详解】
解:(1)由题意可得,
∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,
∴AO=OC•tan34°,BO=OC•tan45°,
∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,
即A,B两点间的距离是1.7km;
(2)由已知可得,
∠DOC=90°,OC=5km,∠DCO=56°,
∴cs∠DCO=
即
∵sin34°=cs56°,
∴
解得,CD≈8.9
答:此时雷达站C和运载火箭D两点间的距离是8.9km.
【点睛】
本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.
24、(1)x=1,y=;(2)小华的打车总费用为18元.
【解析】
试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.
(2)根据里程数和时间来计算总费用.
试题解析:
(1)由题意得,
解得;
(2)小华的里程数是11km,时间为14min.
则总费用是:11x+14y=11+7=18(元).
答:总费用是18元.
册数
0
1
2
3
4
人数
4
12
16
17
1
分数段
频数
频率
60≤m<70
38
0.38
70≤m<80
a
0.32
80≤m<90
b
c
90≤m≤100
10
0.1
合计
1
时间(分钟)
里程数(公里)
车费(元)
小明
8
8
12
小刚
12
10
16
河北省承德市兴隆县2023-2024学年九年级下学期期中数学试题(含解析): 这是一份河北省承德市兴隆县2023-2024学年九年级下学期期中数学试题(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年河北省承德市兴隆县八年级(上)学期期末数学试题(含解析): 这是一份2023-2024学年河北省承德市兴隆县八年级(上)学期期末数学试题(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年河北省承德市中考数学一模试卷(含解析): 这是一份2023年河北省承德市中考数学一模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。