2021-2022学年黑龙江省哈尔滨尚志市中考联考数学试题含解析
展开
这是一份2021-2022学年黑龙江省哈尔滨尚志市中考联考数学试题含解析,共18页。试卷主要包含了下列各式正确的是,一元二次方程2=1的解为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是( )A. B.C. D.2.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A. B. C. D.3.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是( )A.b2>4ac B.ax2+bx+c≤6C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=04.如图,在△ABC中,点D,E分别在边AB,AC上,且,则的值为A. B. C. D.5.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为( )A.6 B.9 C.11 D.无法计算6.下列各式正确的是( )A. B.C. D.7.一元二次方程(x+2017)2=1的解为( )A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20178.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()A.4 B.8 C.2 D.-29.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. B.8 C. D.10.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为( )A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)二、填空题(共7小题,每小题3分,满分21分)11.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.12.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.13.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.14.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.15.计算a3÷a2•a的结果等于_____.16.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.17.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)三、解答题(共7小题,满分69分)18.(10分)已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.19.(5分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.20.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).21.(10分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,,)22.(10分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.23.(12分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)24.(14分)如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.求证:四边形是平行四边形.若,,则在点的运动过程中:①当______时,四边形是矩形;②当______时,四边形是菱形.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F在MD上运动时,0≤x<2,则:y=S梯形ECDG-S△EFC-S△GDF=,当点F在DA上运动时,2<x≤4,则:y=,综上,只有A选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.2、A【解析】分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,。故选A。3、C【解析】观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n,选项C错误; 因对称轴 ,即可得8a+b=0,选项D正确,故选C.点睛:本题主要考查了二次函数y=ax2+bx+c图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.4、C【解析】∵,∠A=∠A,∴△ABC∽△AED。∴。∴。故选C。5、B【解析】
有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3× ×2×3=9,故选B.【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.6、A【解析】∵,则B错;,则C;,则D错,故选A.7、A【解析】
利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.8、C【解析】解:由题意得:,∴,∴x=±1.故选C.9、D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故选D.10、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 二、填空题(共7小题,每小题3分,满分21分)11、1【解析】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.12、108°【解析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.13、14s或38s.【解析】试题解析:分两种情况进行讨论:如图: 旋转的度数为: 每两秒旋转 如图: 旋转的度数为: 每两秒旋转 故答案为14s或38s.14、+1【解析】
根据对称性可知:GJ∥BH,GB∥JH,∴四边形JHBG是平行四边形,∴JH=BG,同理可证:四边形CDFB是平行四边形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,设FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG•BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(负根已经舍弃),∴BF=+1=,∴FG+JH+CD=+1.故答案为+1.15、a1【解析】
根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【详解】解:原式=a3﹣1+1=a1.故答案为a1.【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则.16、1【解析】
联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.【详解】联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:1-y=1,解得:y=0,则,将x=2、y=0代入,得:,解得:,则mn=1,故答案为1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.17、(3a﹣b)【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式. 三、解答题(共7小题,满分69分)18、(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
(2)先利用求根公式得到然后利用有理数的整除性确定整数的值.试题解析:(1)证明:∵m≠0,∴方程为一元二次方程, ∴此方程总有两个不相等的实数根;(2)∵ ∵方程的两个实数根都是整数,且m是整数,∴m=1或m=−1.19、(1)见解析(2)见解析【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC, ∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形20、(1);(2)这两个数字之和是3的倍数的概率为.【解析】
(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.【详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为;(2)列表如下: 1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点睛】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.21、改善后滑板会加长1.1米.【解析】
在Rt△ABC中,根据AB=4米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度.【详解】解:在Rt△ABC中,AC=AB•sin45°=4×=,在Rt△ADC中,AD=2AC=,AD-AB=-4≈1.1.答:改善后滑板会加长1.1米.【点睛】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.22、(1);(2)P(0,6)【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标.试题解析:令一次函数中,则, 解得:,即点A的坐标为(-4,2). ∵点A(-4,2)在反比例函数的图象上,∴k=-4×2=-8, ∴反比例函数的表达式为. 连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值. 设平移后直线于x轴交于点F,则F(6,0)设平移后的直线解析式为,将F(6,0)代入得:b=3∴直线CF解析式: 令3=,解得:, ∴C(-2,4) ∵A、C两点坐标分别为A(-4,2)、C(-2,4)∴直线AC的表达式为, 此时,P点坐标为P(0,6).点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.23、此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45° ,AP=80(海里),在Rt△APC中,cos∠APC=,∴PC=PA•cos∠APC=40(海里),在Rt△PCB中,cos∠BPC=,∴PB==40≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.24、 (1)、证明过程见解析;(2)、①、2;②、1.【解析】
(1)、首先证明△BEF和△DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE是等边三角形,从而得出答案.【详解】(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,∴△EBF≌△DCF(AAS), ∴DC=BE, ∴四边形BECD是平行四边形;(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=1.【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.
相关试卷
这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共26页。
这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列事件中必然发生的事件是等内容,欢迎下载使用。
这是一份黑龙江省哈尔滨尚志市2021-2022学年中考联考数学试卷含解析,共18页。试卷主要包含了下列式子一定成立的是,tan30°的值为等内容,欢迎下载使用。