2021-2022学年菏泽单县北城三中联考毕业升学考试模拟卷数学卷含解析
展开
这是一份2021-2022学年菏泽单县北城三中联考毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,cs45°的值是,下列运算正确的等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.化简:-,结果正确的是( )
A.1 B. C. D.
2.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
3.如图,已知,用尺规作图作.第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )
A.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
B.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
C.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
D.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
4.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是
5.cos45°的值是( )
A. B. C. D.1
6.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为( )
A.9cm B.13cm C.16cm D.10cm
7.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )
A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣5
8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
A. B.
C. D.
9.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
A. B. C. D.
10.下列运算正确的( )
A.(b2)3=b5 B.x3÷x3=x C.5y3•3y2=15y5 D.a+a2=a3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.
12.分解因式:3ax2﹣3ay2=_____.
13.如果正比例函数的图像经过第一、三象限,那么的取值范围是 __.
14.分解因式:2x2﹣8=_____________
15.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.
16.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点 E.
(1)求抛物线的解析式;
(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.
(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由.
18.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.
(1)甲车间每天加工零件为_____件,图中d值为_____.
(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.
(3)甲车间加工多长时间时,两车间加工零件总数为1000件?
19.(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.
20.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
21.(8分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.
22.(10分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.
(1)求直线和双曲线的函数表达式;
(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
①当点C在双曲线上时,求t的值;
②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;
③当时,请直接写出t的值.
23.(12分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.
24.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.
请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
【详解】
【点睛】
本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
2、C
【解析】
【分析】首先确定原点位置,进而可得C点对应的数.
【详解】∵点A、B表示的数互为相反数,AB=6
∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
又∵BC=2,点C在点B的左边,
∴点C对应的数是1,
故选C.
【点睛】本题主要考查了数轴,关键是正确确定原点位置.
3、D
【解析】
根据作一个角等于已知角的作法即可得出结论.
【详解】
解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,
第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.
故选:D.
【点睛】
本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.
4、C
【解析】
试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
故选C
考点:1、方差;2、平均数;3、中位数;4、众数
5、C
【解析】
本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
【详解】
cos45°= .
故选:C.
【点睛】
本题考查特殊角的三角函数值.
6、A
【解析】
试题分析:由折叠的性质知,CD=DE,BC=BE.
易求AE及△AED的周长.
解:由折叠的性质知,CD=DE,BC=BE=7cm.
∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
故选A.
点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
7、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000 0025=2.5×10﹣6;
故选B.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
8、B
【解析】
设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
【详解】
解:设大马有匹,小马有匹,由题意得:
,
故选:B.
【点睛】
本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
9、B
【解析】
试题分析:根据题意得△=32﹣4m>0,
解得m<.
故选B.
考点:根的判别式.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
10、C
【解析】
分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.
详解:A、(b2)3=b6,故此选项错误;
B、x3÷x3=1,故此选项错误;
C、5y3•3y2=15y5,正确;
D、a+a2,无法计算,故此选项错误.
故选C.
点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、48°
【解析】
如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
【详解】
如图,在⊙O上取一点K,连接AK、KC、OA、OC.
∵四边形AKCB内接于圆,
∴∠AKC+∠ABC=180°,
∵∠ABC=114°,
∴∠AKC=66°,
∴∠AOC=2∠AKC=132°,
∵DA、DC分别切⊙O于A、C两点,
∴∠OAD=∠OCB=90°,
∴∠ADC+∠AOC=180°,
∴∠ADC=48°
故答案为48°.
【点睛】
本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.
12、3a(x+y)(x-y)
【解析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).
【点睛】
本题考查提公因式法与公式法的综合运用.
13、k>1
【解析】
根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.
【详解】
因为正比例函数y=(k-1)x的图象经过第一、三象限,
所以k-1>0,
解得:k>1,
故答案为:k>1.
【点睛】
此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.
14、2(x+2)(x﹣2)
【解析】
先提公因式,再运用平方差公式.
【详解】
2x2﹣8,
=2(x2﹣4),
=2(x+2)(x﹣2).
【点睛】
考核知识点:因式分解.掌握基本方法是关键.
15、5
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.
考点:直角三角形斜边上的中线.
16、m≤1.
【解析】
由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
∴关于x的一元二次方程x1+1x+m−1=0有解,
∴△=11−4(m−1)=8−4m≥0,
解得:m≤1.
故答案为:m≤1.
【点睛】
本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.
三、解答题(共8题,共72分)
17、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
【解析】
利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;
由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;
由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论.
【详解】
当时,有,
解得:,,
点A的坐标为.
当时,,
点B的坐标为.
,
,解得:,
抛物线的解析式为.
点A的坐标为,点B的坐标为,
直线AB的解析式为.
点D的横坐标为x,则点D的坐标为,点E的坐标为,
如图.
点F的坐标为,点A的坐标为,点B的坐标为,
,,,
.
,
当时,S取最大值,最大值为18,此时点E的坐标为,
与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.
,,
若要和相似,只需或如图.
设点D的坐标为,则点E的坐标为,
,
当时,,
,
,
为等腰直角三角形.
,即,
解得:舍去,,
点D的坐标为;
当时,点E的纵坐标为4,
,
解得:,舍去,
点D的坐标为.
综上所述:存在点D,使得和相似,此时点D的坐标为或.
故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
【点睛】
本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标.
18、80 770
【解析】
(1)由图象的信息解答即可;
(2)利用待定系数法确定解析式即可;
(3)根据题意列出方程解答即可.
【详解】
(1)由图象甲车间每小时加工零件个数为720÷9=80个,
d=770,
故答案为:80,770
(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,
∴B(4,120),C(9,770)
设yBC=kx+b,过B、C,
∴,解得,
∴y=130x﹣400(4≤x≤9)
(3)由题意得:80x+130x﹣400=1000,
解得:x=
答:甲车间加工天时,两车间加工零件总数为1000件
【点睛】
一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.
19、(1)证明见解析(2)-1
【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
【详解】
(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,
即∠EAB=∠FAC,
在△ACF和△ABE中,
△ACF≌△ABE
BE=CF.
(2)∵四边形ACDE为菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE为等腰直角三角形,
∴BE=AC=,
∴BD=BE﹣DE=.
考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
20、木竿PQ的长度为3.35米.
【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
试题解析:
【详解】
解:过N点作ND⊥PQ于D,
则四边形DPMN为矩形,
∴DN=PM=1.8m,DP=MN=1.1m,
∴,
∴QD==2.25,
∴PQ=QD+DP= 2.25+1.1=3.35(m).
答:木竿PQ的长度为3.35米.
【点睛】
本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
21、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.
【解析】
【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;
(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;
(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出结论.
【详解】(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP;
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC==13cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BD=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.
22、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.
【解析】
(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;
(2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;
②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;
③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.
【详解】
(1)∵直线经过点和
∴将点代入得
解得
故直线的表达式为
将点代入直线的表达式得
解得
∵双曲线经过点
,解得
故双曲线的表达式为;
(2)①轴,点A的坐标为
∴点C的横坐标为12
将其代入双曲线的表达式得
∴C的纵坐标为,即
由题意得,解得
故当点C在双曲线上时,t的值为;
②当时,的大小不发生变化,求解过程如下:
若点D与点A重合
由题意知,点C坐标为
由两点距离公式得:
由勾股定理得,即
解得
因此,在范围内,点D与点A不重合,且在点A左侧
如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK
由(1)知,直线AB的表达式为
令得,则,即
点K为CD的中点,
(直角三角形中,斜边上的中线等于斜边的一半)
同理可得:
A、D、B、C四点共圆,点K为圆心
(圆周角定理)
;
③过点B作于M
由题意和②可知,点D在点A左侧,与点M重合是一个临界位置
此时,四边形ACBD是矩形,则,即
因此,分以下2种情况讨论:
如图2,当时,过点C作于N
又
,即
由勾股定理得
即
解得或(不符题设,舍去)
当时,同理可得:
解得或(不符题设,舍去)
综上所述,t的值为或.
【点睛】
本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
23、(1)见解析;(2)
【解析】
分析:
(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;
(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.
详解:
(1)如下图,连接OD.
∵OA=OD,
∴∠DAB=∠ODA,
∵∠CAD=∠DAB,
∴∠ODA=∠CAD
∴AC∥OD
∴∠C+∠ODC=180°
∵∠C=90°
∴∠ODC=90°
∴OD⊥CD,
∴CD是⊙O的切线.
(2)如下图,连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=9,AD=6,
∴BD===3,
∵∠CAD=∠BAD,∠C=∠ADB=90°,
∴△ACD∽△ADB,
∴,
∴,
∴CD=.
点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.
24、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.
【解析】
试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;
(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;
(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;
(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.
考点:①条形统计图;②扇形统计图.
相关试卷
这是一份陕西省宝鸡凤翔县联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了下列运算中,正确的是等内容,欢迎下载使用。
这是一份河北省沧州青县联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了计算,一个正比例函数的图象过点等内容,欢迎下载使用。
这是一份2022年山东省菏泽单县北城三中中考数学模拟预测试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,6的相反数为,的绝对值是等内容,欢迎下载使用。