年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年河北省石家庄市深泽县中考三模数学试题含解析

    2021-2022学年河北省石家庄市深泽县中考三模数学试题含解析第1页
    2021-2022学年河北省石家庄市深泽县中考三模数学试题含解析第2页
    2021-2022学年河北省石家庄市深泽县中考三模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年河北省石家庄市深泽县中考三模数学试题含解析

    展开

    这是一份2021-2022学年河北省石家庄市深泽县中考三模数学试题含解析,共20页。试卷主要包含了下列运算正确的是,如图,能判定EB∥AC的条件是,计算 的结果为等内容,欢迎下载使用。
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( )
    A.(﹣)B.(﹣)C.(﹣)D.(﹣)
    2.如图所示,a∥b,直线a与直线b之间的距离是( )
    A.线段PA的长度B.线段PB的长度
    C.线段PC的长度D.线段CD的长度
    3.的相反数是( )
    A.B.﹣C.﹣D.
    4.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
    A.140元B.150元C.160元D.200元
    5.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
    A.B.C.D.
    6.下列运算正确的是( )
    A.(a2)4=a6B.a2•a3=a6C.D.
    7.如图,能判定EB∥AC的条件是( )
    A.∠C=∠ABEB.∠A=∠EBD
    C.∠A=∠ABED.∠C=∠ABC
    8.下列生态环保标志中,是中心对称图形的是( )
    A. B. C. D.
    9.在下列各平面图形中,是圆锥的表面展开图的是( )
    A.B.C.D.
    10.计算 的结果为( )
    A.1B.xC.D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
    12.分解因式:_______________.
    13.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.
    14.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
    15.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
    16.计算: 7+(-5)=______.
    17.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)(1)计算:;
    (2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.
    19.(5分)问题探究
    (1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;
    (2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;
    (3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.
    图3
    20.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
    (1)判断直线EF与⊙O的位置关系,并说明理由;
    (2)若∠A=30°,求证:DG=DA;
    (3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
    21.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cs53°≈,tan53°≈)
    22.(10分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.
    23.(12分)先化简,再求值:(1+)÷,其中x=+1.
    24.(14分)吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 .列表:
    表中m= ,n= .描点、连线
    在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
    观察所画出的函数图象,写出该函数的两条性质:
    ① ;
    ② .
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
    【详解】
    过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
    由题意可得:∠C1NO=∠A1MO=90°,
    ∠1=∠2=∠1,
    则△A1OM∽△OC1N,
    ∵OA=5,OC=1,
    ∴OA1=5,A1M=1,
    ∴OM=4,
    ∴设NO=1x,则NC1=4x,OC1=1,
    则(1x)2+(4x)2=9,
    解得:x=±(负数舍去),
    则NO=,NC1=,
    故点C的对应点C1的坐标为:(-,).
    故选A.
    【点睛】
    此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
    2、A
    【解析】
    分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.
    详解:∵a∥b,AP⊥BC
    ∴两平行直线a、b之间的距离是AP的长度
    ∴根据平行线间的距离相等
    ∴直线a与直线b之间的距离AP的长度
    故选A.
    点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.
    3、B
    【解析】
    一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.
    【详解】
    解:的相反数是﹣.
    故选:B.
    【点睛】
    本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
    4、B
    【解析】
    试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
    故选B.
    考点:一元一次方程的应用
    5、A
    【解析】
    列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:
    【详解】
    列表如下:
    ∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,
    ∴,
    故选A.
    6、C
    【解析】
    根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
    【详解】
    A、原式=a8,所以A选项错误;
    B、原式=a5,所以B选项错误;
    C、原式= ,所以C选项正确;
    D、与不能合并,所以D选项错误.
    故选:C.
    【点睛】
    本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
    7、C
    【解析】
    在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
    【详解】
    A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;
    B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;
    C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;
    D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.
    故选C.
    【点睛】
    本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
    8、B
    【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
    故选B.
    【考点】中心对称图形.
    9、C
    【解析】
    结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.
    【详解】
    解:圆锥的展开图是由一个扇形和一个圆形组成的图形.
    故选C.
    【点睛】
    考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.
    10、A
    【解析】
    根据同分母分式的加减运算法则计算可得.
    【详解】
    原式===1,
    故选:A.
    【点睛】
    本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.
    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据概率的公式进行计算即可.
    【详解】
    从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.
    故答案为:.
    【点睛】
    考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    12、 (x+y)(x-y)
    【解析】
    直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).
    13、1:3
    【解析】
    根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.
    故答案为1:3.
    14、y=3x-1
    【解析】
    ∵y=3x+1的图象沿y轴向下平移2个单位长度,
    ∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.
    故答案为y=3x﹣1.
    15、(﹣2,2)
    【解析】
    试题分析:∵直线y=2x+4与y轴交于B点,
    ∴x=0时,
    得y=4,
    ∴B(0,4).
    ∵以OB为边在y轴右侧作等边三角形OBC,
    ∴C在线段OB的垂直平分线上,
    ∴C点纵坐标为2.
    将y=2代入y=2x+4,得2=2x+4,
    解得x=﹣2.
    所以C′的坐标为(﹣2,2).
    考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.
    16、2
    【解析】
    根据有理数的加法法则计算即可.
    【详解】
    .
    故答案为:2.
    【点睛】
    本题考查有理数的加法计算,熟练掌握加法法则是关键.
    17、
    【解析】
    在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.
    【详解】
    在AB上取BN=BE,连接EN,作PM⊥BC于M.
    ∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.
    ∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.
    ∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.
    ∵AB=BC,BN=BE,∴AN=EC.
    ∵∠AEP=90°,∴∠AEB+∠PEC=90°.
    ∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.
    ∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.
    故答案为:.
    【点睛】
    本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    三、解答题(共7小题,满分69分)
    18、(1);(1)1.
    【解析】
    (1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;
    (1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将a−b的值整体代入计算可得.
    【详解】
    (1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;
    (1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,
    当a﹣b=时,
    原式=()1=1.
    【点睛】
    本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力.
    19、(1);(2);(3)+.
    【解析】
    (1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;
    (2)由题意可证点A,点Q,点C,点P四点共圆,可得∠QAC=∠QPC,可证△ABC∽△PQC,可得,可得当QC⊥AB时,PQ的值最小,即可求PQ的最小值;
    (3)作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证△ABC∽△DEC,可得,且∠BCE=∠ACD,可证△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值.
    【详解】
    (1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,
    ∴BC=3,CE=,∠ACB=∠DCE=45°,
    ∴∠BCE=∠ACD,
    ∵==,=,
    ∴=,∠BCE=∠ACD,
    ∴△ACD∽△BCE,
    ∴=;
    (2)∵∠ACB=90°,∠B=30°,BC=4,
    ∴AC=,AB=2AC=,
    ∵∠QAP=∠QCP=90°,
    ∴点A,点Q,点C,点P四点共圆,
    ∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,
    ∴△ABC∽△PQC,
    ∴,
    ∴PQ=×QC=QC,
    ∴当QC的长度最小时,PQ的长度最小,
    即当QC⊥AB时,PQ的值最小,
    此时QC=2,PQ的最小值为;
    (3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,

    ∵∠ADC=90°,AD=CD,
    ∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,
    ∴△ABC∽△DEC,
    ∴,
    ∵∠DCE=∠ACB,
    ∴∠BCE=∠ACD,
    ∴△BCE∽△ACD,
    ∴∠BEC=∠ADC=90°,
    ∴CE=BC=2,
    ∵点F是EC中点,
    ∴DF=EF=CE=,
    ∴BF==,
    ∴BD≤DF+BF=+
    【点睛】
    本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.
    20、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
    【解析】
    (1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
    OEG=90°,即可得到结论;
    (1)根据含30°的直角三角形的性质证明即可;
    (3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
    ∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
    【详解】
    解:(1)连接OE,
    ∵OA=OE,
    ∴∠A=∠AEO,
    ∵BF=EF,
    ∴∠B=∠BEF,
    ∵∠ACB=90°,
    ∴∠A+∠B=90°,
    ∴∠AEO+∠BEF=90°,
    ∴∠OEG=90°,
    ∴EF是⊙O的切线;
    (1)∵∠AED=90°,∠A=30°,
    ∴ED=AD,
    ∵∠A+∠B=90°,
    ∴∠B=∠BEF=60°,
    ∵∠BEF+∠DEG=90°,
    ∴∠DEG=30°,
    ∵∠ADE+∠A=90°,
    ∴∠ADE=60°,
    ∵∠ADE=∠EGD+∠DEG,
    ∴∠DGE=30°,
    ∴∠DEG=∠DGE,
    ∴DG=DE,
    ∴DG=DA;
    (3)∵AD是⊙O的直径,
    ∴∠AED=90°,
    ∵∠A=30°,
    ∴∠EOD=60°,
    ∴∠EGO=30°,
    ∵阴影部分的面积
    解得:r1=4,即r=1,
    即⊙O的半径的长为1.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
    21、(20-5)千米.
    【解析】
    分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
    详解:过点B作BD⊥ AC,
    依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
    ∵BD⊥AC,
    ∴∠ABD=30°,∠CBD=53°,
    在Rt△ABD中,设AD=x,
    ∴tan∠ABD=
    即tan30°=,
    ∴BD=x,
    在Rt△DCB中,
    ∴tan∠CBD=
    即tan53°=,
    ∴CD=
    ∵CD+AD=AC,
    ∴x+=13,解得,x=
    ∴BD=12-,
    在Rt△BDC中,
    ∴cs∠CBD=tan60°=,
    即:BC=(千米),
    故B、C两地的距离为(20-5)千米.
    点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
    22、(1)证明见解析;(2)AD=2.
    【解析】
    (1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;
    (2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.
    【详解】
    (1)如图,连接OA,交BC于F,
    则OA=OB,
    ∴∠D=∠DAO,
    ∵∠D=∠C,
    ∴∠C=∠DAO,
    ∵∠BAE=∠C,
    ∴∠BAE=∠DAO,
    ∵BD是⊙O的直径,
    ∴∠BAD=90°,
    即∠DAO+∠BAO=90°,
    ∴∠BAE+∠BAO=90°,即∠OAE=90°,
    ∴AE⊥OA,
    ∴AE与⊙O相切于点A;
    (2)∵AE∥BC,AE⊥OA,
    ∴OA⊥BC,
    ∴,FB=BC,
    ∴AB=AC,
    ∵BC=2,AC=2,
    ∴BF=,AB=2,
    在Rt△ABF中,AF==1,
    在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
    ∴OB=4,
    ∴BD=8,
    ∴在Rt△ABD中,AD=.
    【点睛】
    本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.
    23、,1+
    【解析】
    运用公式化简,再代入求值.
    【详解】
    原式=

    = ,
    当x=+1时,
    原式=.
    【点睛】
    考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.
    24、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x=2对称
    【解析】
    (1)分式的分母不等于零;
    (2)把自变量的值代入即可求解;
    (3)根据题意描点、连线即可;
    (4)观察图象即可得出该函数的其他性质.
    【详解】
    (1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.
    故答案为:一切实数;
    (2)m=,n=,
    故答案为:-,-;
    (3)建立适当的直角坐标系,描点画出图形,如下图所示:
    (4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.
    故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称
    【点睛】
    本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5
    6

    y


    m
    ﹣1

    ﹣5
    n
    ﹣1




    绿
    绿

    ﹣﹣﹣
    (红,红)
    (红,红)
    (绿,红)
    (绿,绿)

    (红,红)
    ﹣﹣﹣
    (红,红)
    (绿,红)
    (绿,红)

    (红,红)
    (红,红)
    ﹣﹣﹣
    (绿,红)
    (绿,红)
    绿
    (红,绿)
    (红,绿)
    (红,绿)
    ﹣﹣﹣
    (绿,绿)
    绿
    (红,绿)
    (红,绿)
    (红,绿)
    (绿,绿)
    ﹣﹣﹣

    相关试卷

    2021-2022学年河北省石家庄市同文中学中考数学最后一模试卷含解析:

    这是一份2021-2022学年河北省石家庄市同文中学中考数学最后一模试卷含解析,共29页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022学年河北省石家庄市深泽县达标名校中考数学押题试卷含解析:

    这是一份2021-2022学年河北省石家庄市深泽县达标名校中考数学押题试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,某班7名女生的体重等内容,欢迎下载使用。

    2021-2022学年河北省石家庄市名校中考二模数学试题含解析:

    这是一份2021-2022学年河北省石家庄市名校中考二模数学试题含解析,共18页。试卷主要包含了下列计算错误的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map