搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年湖南省湘西土家族苗族自治州凤凰县中考四模数学试题含解析

    2021-2022学年湖南省湘西土家族苗族自治州凤凰县中考四模数学试题含解析第1页
    2021-2022学年湖南省湘西土家族苗族自治州凤凰县中考四模数学试题含解析第2页
    2021-2022学年湖南省湘西土家族苗族自治州凤凰县中考四模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省湘西土家族苗族自治州凤凰县中考四模数学试题含解析

    展开

    这是一份2021-2022学年湖南省湘西土家族苗族自治州凤凰县中考四模数学试题含解析,共21页。试卷主要包含了2016的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.二元一次方程组的解是(  )
    A. B. C. D.
    2.方程组的解x、y满足不等式2x﹣y>1,则a的取值范围为(  )
    A.a≥ B.a> C.a≤ D.a>
    3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )

    A.15° B.22.5° C.30° D.45°
    4.计算(—2)2-3的值是( )
    A、1 B、2 C、—1 D、—2
    5.2016的相反数是( )
    A. B. C. D.
    6.一个正多边形的内角和为900°,那么从一点引对角线的条数是(  )
    A.3 B.4 C.5 D.6
    7.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是(  )
    A.若这5次成绩的中位数为8,则x=8
    B.若这5次成绩的众数是8,则x=8
    C.若这5次成绩的方差为8,则x=8
    D.若这5次成绩的平均成绩是8,则x=8
    8.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是(  )
    A. B.
    C. D.
    9.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是(  )
    A.3,-1 B.1,-3 C.-3,1 D.-1,3
    10.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为(  )
    A. B.2 C.2 D.4
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.

    12.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形

    13.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.

    14.如图Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把△BDP沿PD所在直线翻折后,点B落在点Q处,如果QD⊥BC,那么点P和点B间的距离等于____.

    15.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有人,则可列方程为__________.
    16.已知m=,n=,那么2016m﹣n=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
    如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).

    (1)当x为何值时,OP∥AC;
    (2)求y与x之间的函数关系式,并确定自变量x的取值范围;
    (3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
    18.(8分)已知:AB为⊙O上一点,如图,,,BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.

    (1)求CE的长;
    (2)延长CE到F,使,连结BF并延长BF交⊙O于点G,求BG的长;
    (3)在(2)的条件下,连结GC并延长GC交BH于点D,求证:
    19.(8分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

    (1)这次被调查的同学共有名;
    (2)补全条形统计图;
    (3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
    (4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
    20.(8分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.

    21.(8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有
    “好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.

    (1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.
    利用图中所提供的信息解决以下问题:
    ①小明一共统计了 个评价;
    ②请将图1补充完整;
    ③图2中“差评”所占的百分比是 ;
    (2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.
    22.(10分)如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).

    23.(12分)计算:|﹣1|+﹣(1﹣)0﹣()﹣1.
    24.如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.
    (1)求证:DC=DE;
    (2)若AE=1,,求⊙O的半径.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    利用加减消元法解二元一次方程组即可得出答案
    【详解】
    解:①﹣②得到y=2,把y=2代入①得到x=4,
    ∴,
    故选:B.
    【点睛】
    此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.
    2、B
    【解析】
    方程组两方程相加表示出2x﹣y,代入已知不等式即可求出a的范围.
    【详解】

    ①+②得:
    解得:
    故选:B.
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知
    数的值.
    3、A
    【解析】
    试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.

    考点:平行线的性质.
    4、A
    【解析】本题考查的是有理数的混合运算
    根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。

    解答本题的关键是掌握好有理数的加法、乘方法则。
    5、C
    【解析】
    根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.
    故选C.
    6、B
    【解析】
    n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.
    【详解】
    设这个正多边形的边数是n,则
    (n-2)•180°=900°,
    解得:n=1.
    则这个正多边形是正七边形.
    所以,从一点引对角线的条数是:1-3=4.
    故选B
    【点睛】
    本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.
    7、D
    【解析】
    根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.
    【详解】
    A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;
    B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;
    C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;
    D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
    故选D.
    【点睛】
    本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    8、B
    【解析】
    首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
    【详解】
    设学校购买文学类图书平均每本书的价格是x元,可得:
    故选B.
    【点睛】
    此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
    9、A
    【解析】
    根据题意可得方程组,再解方程组即可.
    【详解】
    由题意得:,
    解得:,
    故选A.
    10、B
    【解析】
    圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
    【详解】
    解:∵圆内接正六边形的边长是1,
    ∴圆的半径为1.
    那么直径为2.
    圆的内接正方形的对角线长为圆的直径,等于2.
    ∴圆的内接正方形的边长是1.
    故选B.
    【点睛】
    本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1-1
    【解析】
    设两个正方形的边长是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入阴影部分的面积是(y﹣x)x求出即可.
    【详解】
    设两个正方形的边长是x、y(x<y),则x2=1,y2=9,x,y=1,则阴影部分的面积是(y﹣x)x=(11.
    故答案为11.
    【点睛】
    本题考查了二次根式的应用,主要考查学生的计算能力.
    12、圆
    【解析】
    根据题意作图,即可得到点F的运动轨迹.
    【详解】
    如图,根据题意作下图,可知F的运动轨迹为圆⊙O’.

    【点睛】
    此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.
    13、①②③④ .
    【解析】
    由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
    证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;
    由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;
    证出△ACD∽△FEQ,得出对应边成比例,得出④正确.
    【详解】
    解:∵四边形ADEF为正方形,
    ∴∠FAD=90°,AD=AF=EF,
    ∴∠CAD+∠FAG=90°,
    ∵FG⊥CA,
    ∴∠GAF+∠AFG=90°,
    ∴∠CAD=∠AFG,
    在△FGA和△ACD中,

    ∴△FGA≌△ACD(AAS),
    ∴AC=FG,①正确;
    ∵BC=AC,
    ∴FG=BC,
    ∵∠ACB=90°,FG⊥CA,
    ∴FG∥BC,
    ∴四边形CBFG是矩形,
    ∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;
    ∵CA=CB,∠C=∠CBF=90°,
    ∴∠ABC=∠ABF=45°,③正确;
    ∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
    ∴△ACD∽△FEQ,
    ∴AC:AD=FE:FQ,
    ∴AD•FE=AD2=FQ•AC,④正确;
    故答案为①②③④.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
    14、2.1或2
    【解析】
    在Rt△ACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根据勾股定理可求QP,继而可求得答案.
    【详解】
    如图所示:

    在Rt△ACB中,∠C=90°,AC=6,BC=8,
    AB==2,
    由折叠的性质可得QD=BD,QP=BP,
    又∵QD⊥BC,
    ∴DQ∥AC,
    ∵D是AB的中点,
    ∴DE=AC=3,BD=AB=1,BE=BC=4,
    ①当点P在DE右侧时,
    ∴QE=1-3=2,
    在Rt△QEP中,QP2=(4-BP)2+QE2,
    即QP2=(4-QP)2+22,
    解得QP=2.1,
    则BP=2.1.
    ②当点P在DE左侧时,同①知,BP=2
    故答案为:2.1或2.
    【点睛】
    考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.
    15、
    【解析】
    根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决
    【详解】
    解:由题意可设有人,
    列出方程:
    故答案为
    【点睛】
    本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.
    16、1
    【解析】
    根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.
    【详解】
    解:∵m===,
    ∴m=n,
    ∴2016m-n=20160=1.
    故答案为:1
    【点睛】
    本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.

    三、解答题(共8题,共72分)
    17、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.
    【解析】
    (1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.
    (2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.
    (3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.
    【详解】
    解:(1)∵Rt△EFG∽Rt△ABC
    ∴,即,
    ∴FG==3cm
    ∵当P为FG的中点时,OP∥EG,EG∥AC
    ∴OP∥AC
    ∴x==×3=1.5(s)
    ∴当x为1.5s时,OP∥AC.
    (2)在Rt△EFG中,由勾股定理得EF=5cm
    ∵EG∥AH
    ∴△EFG∽△AFH
    ∴,
    ∴AH=(x+5),FH=(x+5)
    过点O作OD⊥FP,垂足为D

    ∵点O为EF中点
    ∴OD=EG=2cm
    ∵FP=3﹣x
    ∴S四边形OAHP=S△AFH﹣S△OFP
    =•AH•FH﹣•OD•FP
    =•(x+5)•(x+5)﹣×2×(3﹣x)
    =x2+x+3(0<x<3).
    (3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:1
    则S四边形OAHP=×S△ABC
    ∴x2+x+3=××6×8
    ∴6x2+85x﹣250=0
    解得x1=,x2=﹣(舍去)
    ∵0<x<3
    ∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.
    【点睛】
    本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.
    18、 (1) CE=4;(2)BG=8;(3)证明见解析.
    【解析】
    (1)只要证明△ABC∽△CBE,可得,由此即可解决问题;
    (2)连接AG,只要证明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解决问题;
    (3)通过计算首先证明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可证明.
    【详解】
    解:(1)∵BH与⊙O相切于点B,
    ∴AB⊥BH,
    ∵BH∥CE,
    ∴CE⊥AB,
    ∵AB是直径,
    ∴∠CEB=∠ACB=90°,
    ∵∠CBE=∠ABC,
    ∴△ABC∽△CBE,
    ∴,
    ∵AC=,
    ∴CE=4.
    (2)连接AG.
    ∵∠FEB=∠AGB=90°,∠EBF=∠ABG,
    ∴△ABG∽△FBE,
    ∴,
    ∵BE==4,
    ∴BF= ,
    ∴,
    ∴BG=8.
    (3)易知CF=4+=5,
    ∴GF=BG﹣BF=5,
    ∴CF=GF,
    ∴∠FCG=∠FGC,
    ∵CF∥BD,
    ∴∠GCF=∠BDG,
    ∴∠BDG=∠BGD,
    ∴BG=BD.

    【点睛】
    本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.
    19、(1)1000 (2)200 (3)54° (4)4000人
    【解析】
    试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;
    (2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;
    (3)利用360°乘以对应的比例即可求解;
    (4)利用20000除以调查的总人数,然后乘以200即可求解.
    试题解析:(1)被调查的同学的人数是400÷40%=1000(名);
    (2)剩少量的人数是1000-400-250-150=200(名),

    (3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;
    (4)×200=4000(人).
    答:校20000名学生一餐浪费的食物可供4000人食用一餐.
    【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    20、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
    【解析】
    分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
    (2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
    详解:(1)∵tan∠AOH==
    ∴AH=OH=4
    ∴A(-4,3),代入,得
    k=-4×3=-12
    ∴反比例函数为

    ∴m=6
    ∴B(6,-2)

    ∴=,b=1
    ∴一次函数为
    (2)
    △AHO的周长为:3+4+5=12
    点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
    21、(1)①150;②作图见解析;③13.3%;(2).
    【解析】
    (1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;
    (2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.
    【详解】
    ①小明统计的评价一共有:(40+20)÷(1-60%=150(个);
    ②“好评”一共有150×60%=90(个),补全条形图如图1:

    ③图2中“差评”所占的百分比是:×100%=13.3%;
    (2)列表如下:





    好,好
    好,中
    好,差

    中,好
    中,中
    中,差

    差,好
    差,中
    差,差
    由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,
    ∴两人中至少有一个给“好评”的概率是.
    考点:扇形统计图;条形统计图;列表法与树状图法.
    22、见解析
    【解析】
    分别作∠ABC和∠ACB的平分线,它们的交点O满足条件.
    【详解】
    解:如图,点O为所作.

    【点睛】
    本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
    23、1
    【解析】
    试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.
    试题解析:
    解:|﹣1|+﹣(1﹣)0﹣()﹣1
    =1+3﹣1﹣2
    =1.
    点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.
    24、 (1)见解析;(2).
    【解析】
    (1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;
    (2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.
    【详解】
    (1)证明:连接OD,
    由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,
    ∴∠ODH=∠DHA=90°,
    ∴OD∥CA,
    ∴∠C=∠ODB,
    ∵OD=OB,
    ∴∠OBD=∠ODB,
    ∴∠OBD=∠C,
    ∵∠OBD=∠DEC,
    ∴∠C=∠DEC,
    ∴DC=DE;
    (2)解:由(1)可知:OD∥AC,
    ∴∠ODF=∠AEF,
    ∵∠OFD=∠AFE,
    ∴△OFD∽△AFE,
    ∴,
    ∵AE=1,
    ∴OD=,
    ∴⊙O的半径为.

    【点睛】
    本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.

    相关试卷

    2024年湖南省凤凰县中考一模数学试题(含解析):

    这是一份2024年湖南省凤凰县中考一模数学试题(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省湘西土家族苗族自治州凤凰县2023-2024学年七年级上学期月考数学试题(含解析):

    这是一份湖南省湘西土家族苗族自治州凤凰县2023-2024学年七年级上学期月考数学试题(含解析),共15页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    湖南省湘西土家族苗族自治州凤凰县2022-2023学年七年级上学期学情诊断数学试卷(含解析):

    这是一份湖南省湘西土家族苗族自治州凤凰县2022-2023学年七年级上学期学情诊断数学试卷(含解析),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map