2021-2022学年江苏省海安县东片重点名校中考数学模拟预测题含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1. “a是实数,|a|≥0”这一事件是( )
A.必然事件B.不确定事件C.不可能事件D.随机事件
2.-2的倒数是( )
A.-2B.C.D.2
3.下列方程中,没有实数根的是( )
A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1 =0D.x2﹣2x+2=0
4.计算1+2+22+23+…+22010的结果是( )
A.22011–1B.22011+1
C.D.
5.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣1
6.湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为( )
A.42.4×109B.4.24×108C.4.24×109D.0.424×108
7.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是
A.B.C.D.
8.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2B.m<﹣2
C.m>2D.m<2
9.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( )
A.极差是3B.众数是4C.中位数40D.平均数是20.5
10.已知函数的图象与x轴有交点.则的取值范围是( )
A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠3
二、填空题(共7小题,每小题3分,满分21分)
11.计算:___.
12.计算:=_____________.
13.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.
14.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.
15.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.
根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.
16.分解因式:=____
17.春节期间,《中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在纸上,则他们选取的诗句恰好相同的概率为________.
三、解答题(共7小题,满分69分)
18.(10分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:
根据以上统计图,解答下列问题:本次接受调查的市民共有 人;扇形统计图中,扇形B的圆心角度数是 ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
19.(5分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.
(1)求证:∠PBA=∠C;
(2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.
20.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
21.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
22.(10分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.
(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.
(2)求选出的(m,n)在二、四象限的概率.
23.(12分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.
(1)求四边形OEBF的面积;
(2)求证:OG•BD=EF2;
(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.
24.(14分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.
如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.
2、B
【解析】
根据倒数的定义求解.
【详解】
-2的倒数是-
故选B
【点睛】
本题难度较低,主要考查学生对倒数相反数等知识点的掌握
3、D
【解析】
分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.
【详解】
A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;
B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;
C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;
D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.
故选D.
4、A
【解析】
可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.
【详解】
设S=1+2+22+23+…+22010①
则2S=2+22+23+…+22010+22011②
②-①得S=22011-1.
故选A.
【点睛】
本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.
5、B
【解析】
∵函数y=-2x2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B.
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
6、C
【解析】
科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
【详解】
42.4亿=4240000000,
用科学记数法表示为:4.24×1.
故选C.
【点睛】
考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
7、C
【解析】
根据主视图的定义判断即可.
【详解】
解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确.
故选:.
【点睛】
此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.
8、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
9、C
【解析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
【详解】
解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.
【点睛】
本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.
10、B
【解析】
试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
考点:函数图像与x轴交点的特点.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.
【详解】
原式.
故答案为.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
12、
【解析】
分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.
详解:
原式=.
故答案为:.
点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.
13、8。
【解析】根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论:
由函数图象得:进水管每分钟的进水量为:20÷4=5升。
设出水管每分钟的出水量为a升,由函数图象,得,解得:。
∴关闭进水管后出水管放完水的时间为:(分钟)。
14、k≥-1
【解析】
首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
【详解】
当时,方程是一元一次方程:,方程有实数根;
当时,方程是一元二次方程,
解得:且.
综上所述,关于的方程有实数根,则的取值范围是.
故答案为
【点睛】
考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
这种情况.
15、0.532, 在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.
【解析】
根据用频率估计概率解答即可.
【详解】
∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,
∴这一型号的瓶盖盖面朝上的概率为0.532,
故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.
【点睛】
本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
16、x(y+2)(y-2)
【解析】
原式提取x,再利用平方差公式分解即可.
【详解】
原式=x(y2-4)=x(y+2)(y-2),
故答案为x(y+2)(y-2).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
17、
【解析】
用列举法或者树状图法解答即可.
【详解】
解:如图,
由图可得,甲乙两人选取的诗句恰好相同的概率为.
故答案为:.
【点睛】
本题考查用树状图法或者列表法求随机事件的概率,熟练掌握两种解答方法是关键.
三、解答题(共7小题,满分69分)
18、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.
【解析】
(1)根据D组人数以及百分比计算即可.
(2)根据圆心角度数=360°×百分比计算即可.
(3)求出A,C两组人数画出条形图即可.
(4)利用样本估计总体的思想解决问题即可.
【详解】
(1)本次接受调查的市民共有:50÷25%=1(人),
故答案为1.
(2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;
故答案为:43.2°
(3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).
条形统计图如图所示:
(4)15×40%=6(万人).
答:估计乘公交车上班的人数为6万人.
【点睛】
本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
19、 (1)证明见解析;(2)BC=1.
【解析】
(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;
(2)求出△ABC∽△PBO,得出比例式,代入求出即可.
【详解】
(1)连接OB,
∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,
∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,
∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;
(2)∵⊙O的半径是3 ,
∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,
∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,∴=,∴=,∴BC=1.
【点睛】
本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.
20、(1)见解析(2)见解析
【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
【详解】
解:(1)证明:∵AF∥BC,
∴∠AFE=∠DBE.
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD.
在△AFE和△DBE中,
∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
∴△AFE≌△DBE(AAS)
∴AF=BD.
∴AF=DC.
(2)四边形ADCF是菱形,证明如下:
∵AF∥BC,AF=DC,
∴四边形ADCF是平行四边形.
∵AC⊥AB,AD是斜边BC的中线,
∴AD=DC.
∴平行四边形ADCF是菱形
21、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
【解析】
【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
【详解】(1)设第一批饮料进货单价为元,则:
解得:
经检验:是分式方程的解
答:第一批饮料进货单价为8元.
(2)设销售单价为元,则:
,
化简得:,
解得:,
答:销售单价至少为11元.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
22、(1)详见解析;(2)P=.
【解析】
试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.
试题解析:
(1)画树状图得:
则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).
(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),
∴所选出的m,n在第二、三四象限的概率为:P==
点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).
(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.
(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
23、(1);(2)详见解析;(3)AE=.
【解析】
(1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证得S四边形OEBF=S△BOC=S正方形ABCD;
(2)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OG•OB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;
(3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得AE的长.
【详解】
(1)∵四边形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
∴∠BOF+∠COF=90°,
∵∠EOF=90°,
∴∠BOF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE和△COF中,
∴△BOE≌△COF(ASA),
∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD
(2)证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,
∴△OEG∽△OBE,
∴OE:OB=OG:OE,
∴OG•OB=OE2,
∵
∴OG•BD=EF2;
(3)如图,过点O作OH⊥BC,
∵BC=1,
∴
设AE=x,则BE=CF=1﹣x,BF=x,
∴S△BEF+S△COF=BE•BF+CF•OH
∵
∴当时,S△BEF+S△COF最大;
即在旋转过程中,当△BEF与△COF的面积之和最大时,
【点睛】
本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.
24、(1)见解析;(2);(1)DE的长分别为或1.
【解析】
(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;
(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得MN=;
(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.
【详解】
解:(1)∵AE是AM和AN的比例中项
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE;
(2)∵AC与NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=;
(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
当△AEC与以点E、M、N为顶点所组成的三角形相似时
①∠ENM=∠EAC,如图2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如图1,
过点E作EH⊥AC,垂足为点H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
设DE=1x,则HE=1x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+1x=8,
解得x=1,
∴DE=1x=1,
综上所述,DE的长分别为或1.
【点睛】
本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.
月用电量(度)
25
30
40
50
60
户数
1
2
4
2
1
1组
1~2组
1~3组
1~4组
1~5组
1~6组
1~7组
1~8组
盖面朝上次数
165
335
483
632
801
949
1122
1276
盖面朝上频率
0.550
0.558
0.537
0.527
0.534
0.527
0.534
0.532
江苏省海安县东片2022年中考数学猜题卷含解析: 这是一份江苏省海安县东片2022年中考数学猜题卷含解析,共17页。试卷主要包含了解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。
江苏省海安县东片2021-2022学年中考数学模拟预测试卷含解析: 这是一份江苏省海安县东片2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,的值是等内容,欢迎下载使用。
北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。