2021-2022学年湖南省株洲市中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为( )
A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×105
2.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为( )
A.向下平移3个单位 B.向上平移3个单位
C.向左平移4个单位 D.向右平移4个单位
3.计算﹣8+3的结果是( )
A.﹣11 B.﹣5 C.5 D.11
4.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )
A.5个 B.4个 C.3个 D.2个
5.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①② B.②③ C.①③ D.②④
6.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )
A.7 B.﹣7 C.1 D.﹣1
7.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于( )
A.30° B.35° C.40° D.50°
8.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为( )
A.100cm B.cm C.10cm D.cm
10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:﹣1﹣2=_____.
12.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.
13.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.
14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.
15.直线y=2x+1经过点(0,a),则a=________.
16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.
三、解答题(共8题,共72分)
17.(8分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?
18.(8分)先化简,再求值:,其中a满足a2+2a﹣1=1.
19.(8分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.
(1)若点A′落在矩形的对角线OB上时,OA′的长= ;
(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;
(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).
20.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别
成绩x分
频数(人数)
第1组
50≤x<60
6
第2组
60≤x<70
8
第3组
70≤x<80
14
第4组
80≤x<90
a
第5组
90≤x<100
10
21.(8分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.
22.(10分)如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线.
(1)求的值和点的坐标;
(2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;
(3)当时,若直线与直线和(2)反比例函数的图象分别交于点,,当间距离大于等于2时,求的取值范围.
23.(12分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)
24.如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.
求证:四边形是平行四边形.若,,则在点的运动过程中:
①当______时,四边形是矩形;
②当______时,四边形是菱形.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
详解:1230000这个数用科学记数法可以表示为
故选A.
点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
2、A
【解析】
将抛物线平移,使平移后所得抛物线经过原点,
若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;
若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,
故选A.
3、B
【解析】
绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.
【详解】
解:−8+3=−2.
故选B.
【点睛】
考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.
4、C
【解析】
矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;
等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
平行四边形不是轴对称图形,是中心对称图形,不符合题意.
共3个既是轴对称图形又是中心对称图形.
故选C.
5、B
【解析】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选C.
6、C
【解析】
试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.
故选A.
考点:代数式的求值;整体思想.
7、C
【解析】
分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.
解答:解:∵∠APD是△APC的外角,
∴∠APD=∠C+∠A;
∵∠A=30°,∠APD=70°,
∴∠C=∠APD-∠A=40°;
∴∠B=∠C=40°;
故选C.
8、C
【解析】
y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.
【详解】
∵y随x的增大而减小,∴一次函数y=kx+b单调递减,
∴k<0,
∵kb<0,
∴b>0,
∴直线经过第二、一、四象限,不经过第三象限,
故选C.
【点睛】
本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.
9、C
【解析】
圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.
【详解】
设母线长为R,则
圆锥的侧面积==10π,
∴R=10cm,
故选C.
【点睛】
本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.
10、B
【解析】
解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;
当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、-3
【解析】
-1-2=-1+(-2)=-(1+2)=-3,
故答案为-3.
12、(4,2).
【解析】
利用图象旋转和平移可以得到结果.
【详解】
解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,
则BD′=OD=2,
∴点D坐标为(4,6);
当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,
∴点D向下平移4个单位.故点D′′坐标为(4,2),
故答案为(4,2).
【点睛】
平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.
定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.
13、
【解析】
试题分析:解:设y=x+b,
∴3=2+b,解得:b=1.
∴函数解析式为:y=x+1.故答案为y=x+1.
考点:一次函数
点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.
14、1.
【解析】
试题解析:设俯视图的正方形的边长为.
∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为
∴
解得
∴这个长方体的体积为4×3=1.
15、1
【解析】
根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.
【详解】
∵直线y=2x+1经过点(0,a),
∴a=2×0+1,
∴a=1.
故答案为1.
16、1
【解析】
解:3=2+1;
5=3+2;
8=5+3;
13=8+5;
…
可以发现:从第三个数起,每一个数都等于它前面两个数的和.
则第8个数为13+8=21;
第9个数为21+13=34;
第10个数为34+21=1.
故答案为1.
点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.
三、解答题(共8题,共72分)
17、 (1) 40%;(2) 2616.
【解析】
(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;
(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.
【详解】
解:(1)设A市投资“改水工程”年平均增长率是x,则
.解之,得或(不合题意,舍去).
所以,A市投资“改水工程”年平均增长率为40%.
(2)600+600×1.4+1176=2616(万元).
A市三年共投资“改水工程”2616万元.
18、a2+2a,2
【解析】
根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.
【详解】
解:
=
=
=a(a+2)
=a2+2a,
∵a2+2a﹣2=2,
∴a2+2a=2,
∴原式=2.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
19、(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).
【解析】
分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;
(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;
(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.
详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.
故答案为1;
(Ⅱ)如图2,连接AA′.
∵点A′落在线段AB的中垂线上,∴BA=AA′.
∵△BDA′是由△BDA折叠得到的,
∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,
∴AB=A′B=AA′,∴△BAA′是等边三角形,
∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,
∴AD=ABtan∠ABD=1tan30°=2,
∴OD=OA﹣AD=8﹣2,
∴点D(8﹣2,0);
(Ⅲ)①如图3,当点D在OA上时.
由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,
∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,
由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,
则=,即=,
解得:DN=3﹣5,
则OD=ON+DN=4+3﹣5=3﹣1,
∴D(3﹣1,0);
②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,
则MC=BN==2,∴MO=MC+OC=2+1,
由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,
则=,即=,
解得:ME=,则OE=MO﹣ME=1+.
∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,
∴△DOE∽△A′ME,
∴=,即=,
解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).
综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).
点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.
20、(1)①12,3. ②详见解析.(2).
【解析】
分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;
(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;
(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
详解:(1)①a=50﹣(6+8+14+10)=12,
中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,
所以中位数落在第3组,
故答案为12,3;
②如图,
(2)×100%=44%,
答:本次测试的优秀率是44%;
(3)设小明和小强分别为A、B,另外两名学生为:C、D,
则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
所以小明和小强分在一起的概率为:.
点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.
21、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用等腰三角形的性质和三角形内角和即可得出结论;
(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;
(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.
【详解】
(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,
(2)如图②,连接与,交点为,连接
四边形是矩形
(3)如图3,过点做于点
四边形是矩形
,
是等边三角形
,
由(2)知,
在中,
,
【点睛】
此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.
22、(1),;(2);的取值范围是:.
【解析】
(1)把代入得出的值,进而得出点坐标;
(2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式;
(3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围.
【详解】
解:(1)∵直线: 经过点,
∴,
∴,
∴;
(2)当时,将代入,
得,,
∴代入得,,
∴;
(3)当时,即,而,
如图,,当向下运动但是不超过轴时,符合要求,
∴的取值范围是:.
【点睛】
本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.
23、答案见解析
【解析】
连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.
【详解】
解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,
直线PA,PA′即为所求.
【点睛】
本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.
24、 (1)、证明过程见解析;(2)、①、2;②、1.
【解析】
(1)、首先证明△BEF和△DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE是等边三角形,从而得出答案.
【详解】
(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,
∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,
∴△EBF≌△DCF(AAS), ∴DC=BE, ∴四边形BECD是平行四边形;
(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;
∴∠ECB=30°,∴BE=BC=2,
②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,
∴△CBE是等边三角形,∴BE=BC=1.
【点睛】
本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.
湖南省株洲市中考数学试卷(含解析版): 这是一份湖南省株洲市中考数学试卷(含解析版),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖南省株洲市中考数学试卷(含解析): 这是一份2023年湖南省株洲市中考数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省株洲市荷塘区第五中学2021-2022学年中考联考数学试卷含解析: 这是一份湖南省株洲市荷塘区第五中学2021-2022学年中考联考数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。