搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年湖南省益阳市安化县中考联考数学试卷含解析

    2021-2022学年湖南省益阳市安化县中考联考数学试卷含解析第1页
    2021-2022学年湖南省益阳市安化县中考联考数学试卷含解析第2页
    2021-2022学年湖南省益阳市安化县中考联考数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省益阳市安化县中考联考数学试卷含解析

    展开

    这是一份2021-2022学年湖南省益阳市安化县中考联考数学试卷含解析,共21页。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为(  )

    A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
    2.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是(  )
    A.28 B.29 C.30 D.31
    3.下列计算正确的是(  )
    A. B.0.00002=2×105
    C. D.
    4.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是(  )
    A. B. C. D.
    5.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    6.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是(  )

    A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
    7.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=,∠ADC=,则竹竿AB与AD的长度之比为  

    A. B. C. D.
    8.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )

    A.30° B.40° C.50° D.60°
    9.在下列条件中,能够判定一个四边形是平行四边形的是( )
    A.一组对边平行,另一组对边相等
    B.一组对边相等,一组对角相等
    C.一组对边平行,一条对角线平分另一条对角线
    D.一组对边相等,一条对角线平分另一条对角线
    10.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    11.下列图形中既是中心对称图形又是轴对称图形的是( )
    A. B. C. D.
    12.已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
    A.0 B.1 C.2 D.3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.化简:______.
    14.计算:|﹣3|+(﹣1)2= .
    15.二次函数中的自变量与函数值的部分对应值如下表:




















    则的解为________.
    16.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____

    17.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.


    18.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
    求反比例函数和一次函数的表达式;求当时自变量的取值范围.
    20.(6分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.
    (1)求直线AB的解析式;
    (2)根据图象写出当y1>y2时,x的取值范围;
    (3)若点P在y轴上,求PA+PB的最小值.

    21.(6分)先化简,再求值:,其中x=,y=.
    22.(8分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.
    (1)小明选择去郊游的概率为多少;
    (2)请用树状图或列表法求小明和小亮的选择结果相同的概率.
    23.(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
    24.(10分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.

    25.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.
    (1)求证:EF是⊙O的切线;
    (2)若∠F=30°,BF=3,求弧AD的长.

    26.(12分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.
    (1)求证:△ABC≌△AOD.
    (2)设△ACD的面积为,求关于的函数关系式.
    (3)若四边形ABCD恰有一组对边平行,求的值.

    27.(12分)先化简,再求值÷(x﹣),其中x=.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    令x=0,y=6,∴B(0,6),
    ∵等腰△OBC,∴点C在线段OB的垂直平分线上,
    ∴设C(a,3),则C '(a-5,3),
    ∴3=3(a-5)+6,解得a=4,
    ∴C(4,3).
    故选B.
    点睛:掌握等腰三角形的性质、函数图像的平移.
    2、C
    【解析】
    根据中位数的定义即可解答.
    【详解】
    解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,
    最中间的两个数的平均数是:=30,
    则这组数据的中位数是30;
    故本题答案为:C.
    【点睛】
    此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
    3、D
    【解析】
    在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.
    【详解】
    解:A、原式= ;故本选项错误;
    B、原式=2×10-5;故本选项错误;
    C、原式= ;故本选项错误;
    D、原式=;故本选项正确;
    故选:D.
    【点睛】
    分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.
    4、A
    【解析】
    ∵Rt△ABC中,∠C=90°,sinA=,
    ∴cosA=,
    ∴∠A+∠B=90°,
    ∴sinB=cosA=.
    故选A.
    5、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    6、D
    【解析】
    依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
    【详解】
    解:∵∠ACD是△ABC的外角,
    ∴∠ACD=∠BAC+∠B,
    ∵CE平分∠DCA,
    ∴∠ACD=2∠ACE,
    ∴2∠ACE=∠BAC+∠B,故A选项正确;
    ∵EF∥BC,CF平分∠BCA,
    ∴∠BCF=∠CFE,∠BCF=∠ACF,
    ∴∠ACF=∠EFC,
    ∴OF=OC,
    同理可得OE=OC,
    ∴EF=2OC,故B选项正确;
    ∵CF平分∠BCA,CE平分∠ACD,
    ∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
    ∵O不一定是AC的中点,
    ∴四边形AECF不一定是平行四边形,
    ∴四边形AFCE不一定是矩形,故D选项错误,
    故选D.

    【点睛】
    本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
    7、B
    【解析】
    在两个直角三角形中,分别求出AB、AD即可解决问题;
    【详解】
    在Rt△ABC中,AB=,
    在Rt△ACD中,AD=,
    ∴AB:AD=:=,
    故选B.
    【点睛】
    本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.
    8、D
    【解析】
    如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.

    9、C
    【解析】
    A、错误.这个四边形有可能是等腰梯形.
    B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
    C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.
    D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
    故选C.
    10、C
    【解析】
    试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
    第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
    平均数==38.4
    方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
    ∴选项A,B、D错误;
    故选C.
    考点:方差;加权平均数;中位数;众数.
    11、C
    【解析】
    根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故A错误;
    B、是轴对称图形,不是中心对称图形,故B错误;
    C、既是轴对称图形,也是中心对称图形,故C正确;
    D、既不是轴对称图形,也不是中心对称图形,故D错误;
    故选:C.
    【点睛】
    本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.
    12、D
    【解析】
    解:如图:

    利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.
    故选:D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3
    【解析】
    分析:根据算术平方根的概念求解即可.
    详解:因为32=9
    所以=3.
    故答案为3.
    点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
    14、4.
    【解析】
    |﹣3|+(﹣1)2=4,
    故答案为4.
    15、或
    【解析】
    由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.
    【详解】
    解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),
    ∴此抛物线的对称轴为:直线x=-,
    ∵此抛物线过点(1,0),
    ∴此抛物线与x轴的另一个交点为:(-2,0),
    ∴ax2+bx+c=0的解为:x=-2或1.
    故答案为x=-2或1.
    【点睛】
    此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.
    16、
    【解析】
    设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.
    【详解】
    设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).
    ∵2018=4×504+2,∴K2018为(1009,0).
    故答案为:(),(1009,0).
    【点睛】
    本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.
    17、40°.
    【解析】
    ∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,
    ∴∠ACD=∠BCD,∠CDB=∠CDB′,
    ∵∠ACB=90°,∠A=25°,
    ∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,
    ∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,
    ∴∠ADB′=180°﹣70°﹣70°=40°.
    故答案为40°.
    18、1
    【解析】
    根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
    【详解】
    ∵DE垂直平分AC,∠A=30°,
    ∴AE=CE,∠ACE=∠A=30°,
    ∵∠ACB=80°,
    ∴∠BCE=80°-30°=1°.
    故答案为:1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1) ,;(2)或.
    【解析】
    (1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
    【详解】
    (1)把代入得.
    ∴反比例函数的表达式为
    把和代入得,
    解得
    ∴一次函数的表达式为.
    (2)由得
    ∴当或时,.
    【点睛】
    本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.
    20、(1)y=﹣x+4;(2)1<x<1;(1)2.
    【解析】
    (1)依据反比例函数y2= (x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;
    (2)当1<x<1时,正比例函数图象在反比例函数图象的上方,即可得到当y1>y2时,x的取值范围是1<x<1;
    (1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长.
    【详解】
    (1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2= (x>0),可得
    m=1,n=1,
    ∴A(1,1)、B(1,1),
    把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得
    ,解得,
    ∴直线AB的解析式为y=-x+4;
    (2)观察函数图象,发现:
    当1<x<1时,正比例函数图象在反比例函数图象的上方,
    ∴当y1>y2时,x的取值范围是1<x<1.
    (1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,
    过C作y轴的平行线,过B作x轴的平行线,交于点D,则

    Rt△BCD中,BC=,
    ∴PA+PB的最小值为2.
    【点睛】
    本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.
    21、x+y,.
    【解析】
    试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
    试题解析:原式= ==x+y,
    当x=,y==2时,原式=﹣2+2=.
    22、(1);(2).
    【解析】
    (1)利用概率公式直接计算即可;
    (2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案
    【详解】
    (1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,
    ∴小明选择去郊游的概率=;
    (2)列表得:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,
    所以小明和小亮的选择结果相同的概率==.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    23、100或200
    【解析】
    试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.
    试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,
    列方程得,
    (8+×4)=4800,
    x2﹣300x+20000=0,
    解得x1=200,x2=100;
    要使百姓得到实惠,只能取x=200,
    答:每台冰箱应降价200元.
    考点:一元二次方程的应用.
    24、.
    【解析】
    试题分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
    试题解析:∵∠ACD=∠ABC,∠A=∠A, ∴△ACD∽△ABC. ∴,∵AD=2,AB=6,∴.∴.∴AC=.
    考点:相似三角形的判定与性质.
    25、(1)见解析;(2)2π.
    【解析】
    证明:(1)连接OD,

    ∵AB是直径,
    ∴∠ADB=90°,即AD⊥BC,
    ∵AB=AC,
    ∴AD平分∠BAC,
    ∴∠OAD=∠CAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥EF,
    ∵OD过O,
    ∴EF是⊙O的切线.
    (2)∵OD⊥DF,
    ∴∠ODF=90°,
    ∵∠F=30°,
    ∴OF=2OD,即OB+3=2OD,
    而OB=OD,
    ∴OD=3,
    ∵∠AOD=90°+∠F=90°+30°=120°,
    ∴的长度=.
    【点睛】
    本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.
    26、(1)证明详见解析;(2)S=(m+1)2+(m>);(2)2或1.
    【解析】
    试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明△ABC≌△AOD;
    (2)过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,证明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);
    (2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.
    试题解析:(1)证明:∵A(0,5),B(2,1),
    ∴AB==5,
    ∴AB=OA,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    在Rt△ABC和Rt△AOD中,

    ∴Rt△ABC≌Rt△AOD;
    (2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,
    ∴∠2=∠2,
    ∴Rt△ABF∽Rt△BCE,
    ∴,即,
    ∴BC=(m+1),
    在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,
    ∵△ABC≌△AOD,
    ∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,
    ∴∠4=∠5,
    而AO=AB,AD=AC,
    ∴△AOB∽△ACD,
    ∴=,
    而S△AOB=×5×2=,
    ∴S=(m+1)2+(m>);
    (2)作BH⊥y轴于H,如图,
    当AB∥CD时,则∠ACD=∠CAB,
    而△AOB∽△ACD,
    ∴∠ACD=∠AOB,
    ∴∠CAB=∠AOB,
    而tan∠AOB==2,tan∠ACB===,
    ∴=2,解得m=1;
    当AD∥BC,则∠5=∠ACB,
    而△AOB∽△ACD,
    ∴∠4=∠5,
    ∴∠ACB=∠4,
    而tan∠4=,tan∠ACB=,
    ∴=,
    解得m=2.
    综上所述,m的值为2或1.

    考点:相似形综合题.
    27、6
    【解析】
    【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.
    【详解】原式=
    =
    =,
    当x=,原式==6.
    【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.

    相关试卷

    2022-2023学年湖南省益阳市安化县八年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年湖南省益阳市安化县八年级(下)期末数学试卷(含解析),共20页。试卷主要包含了选择题,四象限,则k的取值范围是,解答题等内容,欢迎下载使用。

    2022-2023学年湖南省益阳市安化县七年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年湖南省益阳市安化县七年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省益阳市中考数学试卷(含解析):

    这是一份2023年湖南省益阳市中考数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map