2021-2022学年湖南省郴州市第五完全中学十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是( )
A. B. C. D.
2.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是( )
A.b2>4ac B.ax2+bx+c≤6
C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=0
3.下列四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
5.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
6.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度( )
A.1 B.5 C.1或5 D.2或4
7.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
A.—7℃ B.7℃ C.—1℃ D.1℃
8.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为( )
A.76° B.74° C.72° D.70°
9.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为( )
A. B.2 C. D.3
10.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
二、填空题(本大题共6个小题,每小题3分,共18分)
11.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.
12.分解因式:=____
13.已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为______.
14.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.
15.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.
16.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为_____.
三、解答题(共8题,共72分)
17.(8分)如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.
18.(8分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.
19.(8分)如图所示:△ABC是等腰三角形,∠ABC=90°.
(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);
(2)垂直平分线l交AC于点D,求证:AB=2DH.
20.(8分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:
(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;
(2)把条形统计图补充完整;
(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.
21.(8分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
(1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人.
(2)将条形统计图补充完整;
(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.
22.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.
23.(12分)计算:×(2﹣)﹣÷+.
24.台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:
(1)求日销售量y与时间t的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2400元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.
【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,
∵∠ACB=90°,即∠BCD+∠ACD=90°,
∴∠ACD=∠B=α,
A、在Rt△BCD中,sinα=,故A正确,不符合题意;
B、在Rt△ABC中,sinα=,故B正确,不符合题意;
C、在Rt△ACD中,sinα=,故C正确,不符合题意;
D、在Rt△ACD中,cosα=,故D错误,符合题意,
故选D.
【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
2、C
【解析】
观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m
3、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,是中心对称图形,故此选项不合题意;
B、是轴对称图形,不是中心对称图形,故此选项不合题意;
C、不是轴对称图形,不是中心对称图形,故此选项不合题意;
D、是轴对称图形,是中心对称图形,故此选项符合题意;
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4、C
【解析】
试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.
5、A
【解析】
试题分析:不可能事件发生的概率为0,故A正确;
随机事件发生的概率为在0到1之间,故B错误;
概率很小的事件也可能发生,故C错误;
投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
故选A.
考点:随机事件.
6、C
【解析】
由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.
【详解】
∵点C是劣弧AB的中点,
∴OC垂直平分AB,
∴DA=DB=3,
∴OD=,
若△POC为直角三角形,只能是∠OPC=90°,
则△POD∽△CPD,
∴,
∴PD2=4×1=4,
∴PD=2,
∴PB=3﹣2=1,
根据对称性得,
当P在OC的左侧时,PB=3+2=5,
∴PB的长度为1或5.
故选C.
【点睛】
考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.
7、B
【解析】
求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
【详解】
3-(-4)=3+4=7℃.
故选B.
8、B
【解析】
直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.
【详解】
解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故选:B.
【点睛】
此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.
9、C
【解析】
延长BC 到E 使BE=AD,利用中点的性质得到CM= DE=AB,再利用勾股定理进行计算即可解答.
【详解】
解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,
∵BC=3,AD=1,
∴C是BE的中点,
∵M是BD的中点,
∴CM= DE=AB,
∵AC⊥BC,
∴AB==,
∴CM= ,
故选:C.
【点睛】
此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.
10、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、5
【解析】
试题分析:利用根与系数的关系进行求解即可.
解:∵x1,x2是方程x2-3x+2=0的两根,
∴x1+ x2=,x1x2=,
∴x1+x2+x1x2=3+2=5.
故答案为:5.
12、x(y+2)(y-2)
【解析】
原式提取x,再利用平方差公式分解即可.
【详解】
原式=x(y2-4)=x(y+2)(y-2),
故答案为x(y+2)(y-2).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
13、﹣1.
【解析】
根据反比例函数图象上点的坐标特征得到 再把它们相乘,然后把代入计算即可.
【详解】
根据题意得
所以
故答案为:−1.
【点睛】
考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.
14、1.
【解析】
∵∠AOB=∠COD,
∴S阴影=S△AOB.
∵四边形ABCD是平行四边形,
∴OA=AC=×1=2.
∵AB⊥AC,
∴S阴影=S△AOB=OA•AB=×2×1=1.
【点睛】
本题考查了扇形面积的计算.
15、3.308×1.
【解析】
正确用科学计数法表示即可.
【详解】
解:33080=3.308×1
【点睛】
科学记数法的表示形式为的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.
16、7π
【解析】
连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出的长.
【详解】
连接OD,
∵直线DE与⊙O相切于点D,
∴∠EDO=90°,
∵∠CDE=20°,
∴∠ODB=180°-90°-20°=70°,
∵OD=OB,
∴∠ODB=∠OBD=70°,
∴∠AOD=140°,
∴的长==7π,
故答案为:7π.
【点睛】
本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.
三、解答题(共8题,共72分)
17、(1)答案见解析;(2)45°.
【解析】
(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;
(2)根据∠DBF=∠ABD﹣∠ABF计算即可;
【详解】
(1)如图所示,直线EF即为所求;
(2)∵四边形ABCD是菱形,
∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,
∴∠ABC=150°,∠ABC+∠C=180°,
∴∠C=∠A=30°.
∵EF垂直平分线段AB,
∴AF=FB,
∴∠A=∠FBA=30°,
∴∠DBF=∠ABD﹣∠FBE=45°.
【点睛】
本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.
18、(1)证明见解析;(2).
【解析】
试题分析:利用矩形角相等的性质证明△DAE∽△AMB.
试题解析:
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAE=∠AMB,
又∵∠DEA=∠B=90°,
∴△DAE∽△AMB.
(2)由(1)知△DAE∽△AMB,
∴DE:AD=AB:AM,
∵M是边BC的中点,BC=6,
∴BM=3,
又∵AB=4,∠B=90°,
∴AM=5,
∴DE:6=4:5,
∴DE=.
19、 (1)见解析;(2)证明见解析.
【解析】
(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;
(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.
【详解】
解:(1)如图所示:直线l即为所求;
(2)证明:∵点H是AB的中点,且DH⊥AB,
∴DH∥BC,
∴点D是AC的中点,
∵
∴AB=2DH.
【点睛】
考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.
20、(1)50,20%,72°.
(2)图形见解析;
(3)选出的2人来自不同科室的概率=.
【解析】
试题分析:(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.
(2)先求出样本中B类人数,再画图.
(3)画树状图并求出选出的2人来自不同科室的概率.
试题解析:(1)调查样本人数为4÷8%=50(人),
样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,
B类人数所在扇形统计图中的圆心角度数是20%×360°=72°;
(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人)
;
(3)画树状图为:
共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,
所以选出的2人来自不同科室的概率=.
考点:1.条形统计图2.扇形统计图3.列表法与树状图法.
21、(1)50,10;(2)见解析.(3)16.8万
【解析】
(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.
(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,
由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.
(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为24× =16.8(万).
【详解】
解:(1)本次被调查的学员共有:15÷30%=50(人),
在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),
故答案为50,10;
(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,
在被调查者中参加“4科”课外辅导的有:50×10%=5(人),
补全的条形统计图如右图所示;
(3)24× =16.8(万),
答:参与辅导科目不多于2科的学生大约有16.8人.
【点睛】
本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.
22、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
【解析】
(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
解:(1)把点A(1,a)代入一次函数y=﹣x+4,
得a=﹣1+4,
解得a=3,
∴A(1,3),
点A(1,3)代入反比例函数y=,
得k=3,
∴反比例函数的表达式y=,
(2)把B(3,b)代入y=得,b=1
∴点B坐标(3,1);
作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
∴D(3,﹣1),
设直线AD的解析式为y=mx+n,
把A,D两点代入得,, 解得m=﹣2,n=1,
∴直线AD的解析式为y=﹣2x+1,
令y=0,得x=,
∴点P坐标(,0),
(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
23、5-
【解析】
分析:先化简各二次根式,再根据混合运算顺序依次计算可得.
详解:原式=3×(2-)-+
=6--+
=5-
点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.
24、 (1)y=﹣2t+200(1≤t≤80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.
【解析】
(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;
(2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;
(3)求出w=2400时t的值,结合函数图象即可得出答案;
【详解】
(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:
,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);
(2)设日销售利润为w,则w=(p﹣6)y,
当1≤t≤80时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
∴当t=30时,w最大=2450;
∴第30天的日销售利润最大,最大利润为2450元.
(3)由(2)得:当1≤t≤80时,
w=﹣(t﹣30)2+2450,
令w=2400,即﹣ (t﹣30)2+2450=2400,
解得:t1=20、t2=40,
∴t的取值范围是20≤t≤40,
∴共有21天符合条件.
【点睛】
本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.
湖南省张家界市永定区民族中学2021-2022学年十校联考最后数学试题含解析: 这是一份湖南省张家界市永定区民族中学2021-2022学年十校联考最后数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022学年湖南省株洲市株洲县十校联考最后数学试题含解析: 这是一份2021-2022学年湖南省株洲市株洲县十校联考最后数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,估计-1的值在等内容,欢迎下载使用。
2021-2022学年湖南省长沙市明德华兴中学十校联考最后数学试题含解析: 这是一份2021-2022学年湖南省长沙市明德华兴中学十校联考最后数学试题含解析,共22页。试卷主要包含了已知抛物线y=ax2+bx+c等内容,欢迎下载使用。