年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版A版(2019)课标高中数学必修二7.2复数的四则运算 教案

    人教版A版(2019)课标高中数学必修二7.2复数的四则运算  教案第1页
    人教版A版(2019)课标高中数学必修二7.2复数的四则运算  教案第2页
    人教版A版(2019)课标高中数学必修二7.2复数的四则运算  教案第3页
    还剩10页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第七章 复数7.2 复数的四则运算教案

    展开

    这是一份数学第七章 复数7.2 复数的四则运算教案,共13页。教案主要包含了教学目标,教学重难点,教学建议,教学过程等内容,欢迎下载使用。
    【教学目标】
    1.知识与技能
    理解并掌握复数的代数形式的乘法与除法运算法则,了解共轭复数的概念。
    2.过程与方法
    理解并掌握复数的除法运算实质是分母实数化问题,通过运算过程体会这一变形本质意图。
    3.情感、态度与价值观
    利用多项式除法和复数除法类比,知道事物之间是普遍联系的。通过复数除法运算,培养学生探索问题、分析问题、解决问题的能力。
    【教学重难点】
    重点:复数代数形式的乘除法运算。
    难点:复数除法法则的运用。
    【教学建议】
    建议本节教学采用自学指导法,在学生自主学习的基础上可利用一下教学方法及手段完成本节教学:(1)类比分析法,通过对比多项式的乘法法则推出复数乘法法则。(2)归纳推理法,运用已有的多项式乘法法则和分母有理化及复数加减法的知识,通过归纳类比,推导复数除法法则。(3)合理、恰当地运用多媒体教学手段,将静态事物动态化,将抽象事物直观化,以突破教学难点。
    【教学过程】
    创设问题情境,引出问题,引导学生思考两个复数如何进行代数形式的乘法与除法运算。让学生自主完成填一填,使学生进一步熟悉复数代数形式的乘法、除法运算的法则,及其满足的运算律。引导学生分析例题1的运算方法并求解,教师只需指导完善,解答疑惑并要求学生独立完成变式训练。由学生分组探究例题2解法,引导学生去发现in运算的周期性,及其应用方法。完成互动探究。
    完成当堂双基达标,巩固所学知识及应用方法。并进行反馈矫正。归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法。学生自主完成例题3变式训练,老师抽查完成情况,对出现问题及时指导。通过易错辨析纠正运算中出现的错误。让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法。老师组织解法展示,引导学生总结解题规律。
    问题导思:
    1.如何规定两个复数相乘?
    提示:两个复数相乘类似于多项式相乘,只要在所得结果中把i2换成-1,并且把实部与虚部分别合并即可。
    2.复数乘法满足交换律、结合律以及乘法对加法的分配律吗?
    提示:满足。
    (1)设z1=a+bi,z2=c+di(a,b,c,d∈R),则
    z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i。
    (2)对于任意z1,z2,z3∈C,有
    问题导思:
    如何规定两个复数z1=a+bi,z2=c+di(a,b,c,d∈R,c+di≠0)相除?
    提示:eq \f(z1,z2)=eq \f(a+bi,c+di)=eq \f(a+bic-di,c+dic-di)=eq \f(ac+bd+bc-adi,c2+d2)。
    (1)z1=a+bi,z2=c+di(a,b,c,d为实数,c+di≠0),z1,z2进行除法运算时,通常先把(a+bi)÷(c+di)写成eq \f(a+bi,c+di)的形式再把分子与分母都乘以c-di化简后可得结果:eq \f(ac+bd,c2+d2)+eq \f(bc-ad,c2+d2)i。
    (2)共轭复数
    如果两个复数满足实部相等,虚部互为相反数时,称这两个复数为共轭复数,z的共轭复数用eq \x\t(z)表示。即z=a+bi,则eq \x\t(z)=a-bi。虚部不等于0的两个共轭复数也叫共轭虚数。
    例1:(1)(2013·课标全国卷Ⅱ)设复数z满足(1-i)·z=2i,则z=( )
    A.-1+i B.-1-i C.1+i D.1-i
    (2)(2013·大纲全国卷)(1+eq \r(3)i)3=( )
    A.-8 B.8 C.-8i D.8i
    (3)计算(eq \f(1+i,1-i))6+eq \f(\r(2)+\r(3)i,\r(3)-\r(2)i)=________。
    思路探究:(1)先设出复数z=a+bi,然后运用复数相等的充要条件求出a,b的值。
    (2)直接利用复数的乘法运算法则计算。
    (3)先计算eq \f(1+i,1-i)再乘方,且将eq \f(\r(2)+\r(3)i,\r(3)-\r(2)i)的分母实数化后再合并。
    自主解答:(1)设z=a+bi,则(1-i)(a+bi)=2i,即(a+b)+(b-a)i=2i。
    根据复数相等的充要条件得eq \b\lc\{\rc\ (\a\vs4\al\c1(a+b=0,,b-a=2,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=-1,,b=1,))
    ∴z=-1+i。故选A.
    (2)原式=(1+eq \r(3)i)(1+eq \r(3)i)2=(1+eq \r(3)i)(-2+2eq \r(3)i)=-2+6i2=-8.
    (3)法一:原式=eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1+i2,2)))6+eq \f(\r(2)+\r(3)i\r(3)+\r(2)i,5)
    =i6+eq \f(\r(6)+2i+3i-\r(6),5)=-1+i。
    法二 原式=eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1+i2,2)))6+eq \f(\r(2)+\r(3)ii,\r(3)-\r(2)ii)
    =i6+eq \f(\r(2)+\r(3)ii,\r(2)+\r(3)i)
    =-1+i。
    答案:(1)A (2)A (3)-1+i
    规律方法
    1.复数的乘法类比多项式相乘进行运算,复数除法要先写成分式形式后,再将分母实数化,注意最后结果要写成a+bi(a,b∈R)的形式。
    2.记住以下结论可以提高运算速度
    (1)(1+i)2=2i,(1-i)2=-2i;
    (2)eq \f(1-i,1+i)=-i,eq \f(1+i,1-i)=i;
    (3)eq \f(1,i)=-i。
    变式训练
    计算:
    (1)(1-i)2;
    (2)(-eq \f(1,2)+eq \f(\r(3),2)i)(eq \f(\r(3),2)+eq \f(1,2)i)(1+i);
    (3)eq \f(2i,2+i)。
    解:(1)(1-i)2=1-2i+i2=-2i。
    (2)(-eq \f(1,2)+eq \f(\r(3),2)i)(eq \f(\r(3),2)+eq \f(1,2)i)(1+i)
    =(-eq \f(\r(3),4)-eq \f(1,4)i+eq \f(3,4)i+eq \f(\r(3),4)i2)(1+i)
    =(-eq \f(\r(3),4)+eq \f(1,2)i-eq \f(\r(3),4))(1+i)
    =(-eq \f(\r(3),2)+eq \f(1,2)i)(1+i)
    =-eq \f(\r(3),2)-eq \f(\r(3),2)i+eq \f(1,2)i-eq \f(1,2)
    =-eq \f(1+\r(3),2)+eq \f(1-\r(3),2)i。
    (3)eq \f(2i,2+i)=eq \f(2i2-i,2+i2-i)=eq \f(2+4i,5)=eq \f(2,5)+eq \f(4,5)i。
    例2: (1)计算:eq \f(-2\r(3)+i,1+2\r(3)i)+(eq \f(\r(2),1-i))2 013;
    (2)若复数z=eq \f(1+i,1-i),求1+z+z2+…+z2 013的值。
    思路探究:将式子进行适当的化简、变形,使之出现in的形式,然后再根据in的值的特点计算求解。
    自主解答:(1)原式=eq \f(i1+2\r(3)i,1+2\r(3)i)+[(eq \f(\r(2),1-i))2]1 006·(eq \f(\r(2),1-i))
    =i+(eq \f(2,-2i))1 006·eq \f(\r(2)1+i,2)=i+i1 006·eq \f(\r(2)1+i,2)
    =-eq \f(\r(2),2)+eq \f(2-\r(2),2)i
    (2)1+z+z2+…+z2 013=eq \f(1-z2 014,1-z),
    而z=eq \f(1+i,1-i)=eq \f(1+i2,1-i1+i)=eq \f(2i,2)=i,
    所以1+z+z2+…+z2 013=eq \f(1-i2 014,1-i)=eq \f(1-i2,1-i)=1+i。
    规律方法
    1.要熟记in的取值的周期性,要注意根据式子的特点创造条件使之与in联系起来以便计算求值。
    2.如果涉及数列求和问题,应先利用数列方法求和后再求解。
    互动探究
    在本例(2)中若z=i,求1+z+z2+…+z2 013的值。
    解:由题意知
    1+z+z2+…+z2 013=1+i+i2+…+i2 013
    =eq \f(1·1-i2 014,1-i)=eq \f(1-i4×503+2,1-i)=eq \f(1-i2,1-i)=1+i。
    ∴原式=1+i。
    例3:设z1,z2∈C,A=z1·eq \x\t(z2)+z2·eq \x\t(z1),B=z1·eq \x\t(z1)+z2·eq \x\t(z2),问A与B是否可以比较大小?为什么?
    思路探究:设出z1,z2的代数形式→化简A,B→判断A,B是否同为实数→结论
    自主解答:设z1=a+bi,
    z2=c+di(a,b,c,d∈R),
    则eq \x\t(z1)=a-bi,eq \x\t(z2)=c-di,
    ∴A=z1·eq \x\t(z2)+z2·eq \x\t(z1)
    =(a+bi)(c-di)+(c+di)(a-bi)
    =ac-adi+bci-bdi2+ac-bci+adi-bdi2
    =2ac+2bd∈R,
    B=z1·eq \x\t(z1)+z2·eq \x\t(z2)
    =|z1|2+|z2|2
    =a2+b2+c2+d2∈R,
    ∴A与B可以比较大小。
    规律方法
    1.z·eq \x\t(z)=|z|2=|eq \x\t(z)|2是共轭复数的常用性质。
    2.实数的共轭复数是它本身,即z∈R⇔z=eq \x\t(z),利用此性质可以证明一个复数是实数。
    3.若z≠0且z+eq \x\t(z)=0,则z为纯虚数,利用此性质可证明一个复数是纯虚数。
    变式训练
    已知z∈C,eq \x\t(z)为z的共轭复数,若z·eq \x\t(z)-3ieq \x\t(z)=1+3i,求z。
    解:设z=a+bi(a,b∈R),则eq \x\t(z)=a-bi(a,b∈R),
    由题意得(a+bi)(a-bi)-3i(a-bi)=1+3i,
    即a2+b2-3b-3ai=1+3i,
    则有eq \b\lc\{\rc\ (\a\vs4\al\c1(a2+b2-3b=1,-3a=3)),
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=-1,b=0))或eq \b\lc\{\rc\ (\a\vs4\al\c1(a=-1,b=3)),
    所以z=-1或z=-1+3i。
    典例:设复数z满足eq \f(1+2i,z)=i,则z=( )
    A.-2+I B.-2-i
    C.2-i D.2+i
    错解:设复数z=a+bi(a,b∈R)满足eq \f(1+2i,z)=i,
    所以1+2i=ai+B.
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=2,,b=1,))
    所以z=2+i,故选D项。
    答案:D
    错因分析:将i2=-1当成i2=1来运算漏掉负号。
    防范措施:在进行乘除法运算时,灵活运用i的性质,并注意一些重要结论的灵活应用。
    正解:设复数z=a+bi(a,b∈R)满足eq \f(1+2i,z)=i,
    所以1+2i=ai-B.
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=2,,b=-1,))
    所以z=2-i,故选C项。
    答案:C
    课堂小结
    1.复数代数形式的乘除运算
    (1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律。
    (2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化。
    2.共轭复数的性质可以用来解决一些复数问题。
    3.复数问题实数化思想。
    复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z=a+bi(a,b∈R),利用复数相等的充要条件转化。
    当堂双基达标
    1.(2012·北京高考)在复平面内,复数eq \f(10i,3+i)对应的点的坐标为( )
    A.(1,3) B.(3,1)
    C.(-1,3) D.(3,-1)
    解析:eq \f(10i,3+i)=eq \f(10i3-i,32+12)=eq \f(10i3-i,10)=1+3i,
    ∴其对应点的坐标为(1,3),选A.
    答案:A
    2.(2013·安徽高考)设i是虚数单位,若复数a-eq \f(10,3-i)(a∈R)是纯虚数,则a的值为( )
    A.-3 B.-1
    C.1 D.3
    解析:因为a-eq \f(10,3-i)=a-eq \f(103+i,3-i3+i)=a-eq \f(103+i,10)=(a-3)-i,由纯虚数的定义,知a-3=0,所以a=3.
    答案:D
    3.若x-2+yi和3x-i互为共轭复数,则实数x=________,y=________。
    解析:由题意得:eq \b\lc\{\rc\ (\a\vs4\al\c1(x-2=3x,,y=1,))
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(x=-1,,y=1.))
    答案:-1、1
    4.计算:
    (1)(1-i)(-eq \f(1,2)+eq \f(\r(3),2)i)(1+i);
    (2)eq \f(\r(2)+\r(3)i,\r(3)-\r(2)i);
    (3)(2-i)2.
    解:(1)法一:(1-i)(-eq \f(1,2)+eq \f(\r(3),2)i)(1+i)
    =(-eq \f(1,2)+eq \f(\r(3),2)i+eq \f(1,2)i-eq \f(\r(3),2)i2)(1+i)
    =(eq \f(\r(3)-1,2)+eq \f(\r(3)+1,2)i)(1+i)
    =eq \f(\r(3)-1,2)+eq \f(\r(3)+1,2)i+eq \f(\r(3)-1,2)i+eq \f(\r(3)+1,2)i2
    =-1+eq \r(3)i。
    法二:原式=(1-i)(1+i)(-eq \f(1,2)+eq \f(\r(3),2)i)
    =(1-i2)(-eq \f(1,2)+eq \f(\r(3),2)i)
    =2(-eq \f(1,2)+eq \f(\r(3),2)i)
    =-1+eq \r(3)i。
    (2)eq \f(\r(2)+\r(3)i,\r(3)-\r(2)i)=eq \f(\r(2)+\r(3)i\r(3)+\r(2)i,\r(3)-\r(2)i\r(3)+\r(2)i)
    =eq \f(\r(2)+\r(3)i\r(3)+\r(2)i,\r(3)2+\r(2)2)
    =eq \f(\r(6)+2i+3i-\r(6),5)
    =eq \f(5i,5)=i。
    (3)(2-i)2=(2-i)(2-i)
    =4-4i+i2
    =3-4i。
    课后知能训练
    一、选择题
    1.复数(2+i)2等于( )
    A.3+4i B.5+4i
    C.3+2i D.5+2i
    解析:(2+i)2=4+4i+i2=4+4i-1=3+4i。故选A.
    答案:A
    2.i是虚数单位,复数eq \f(5+3i,4-i)=( )
    A.1-i B.-1+i
    C.1+i D.-1-i
    解析:eq \f(5+3i,4-i)=eq \f(5+3i4+i,42+1)=eq \f(17+17i,17)=1+i。
    答案:C
    3.若复数z满足(3-4i)z=|4+3i|,则z的虚部为( )
    A.-4 B.-eq \f(4,5)
    C.4 D.eq \f(4,5)
    解析:∵(3-4i)z=|4+3i|,∴z=eq \f(|4+3i|,3-4i)=eq \f(\r(42+32),3-4i)=eq \f(53+4i,25)=eq \f(3,5)+eq \f(4,5)i,∴z的虚部为eq \f(4,5)。
    答案:D
    4.若z+eq \x\t(z)=6,z·eq \x\t(z)=10,则z=( )
    A.1±3i B.3±i
    C.3+i D.3-i
    解析:设z=a+bi(a,b∈R),则eq \x\t(z)=a-bi,
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(2a=6,a2+b2=10)),解得a=3,b=±1,则z=3±i。
    答案:B
    5.(2013·湖北高考)在复平面内,复数z=eq \f(2i,1+i)(i为虚数单位)的共轭复数对应的点位于( )
    A.第一象限 B.第二象限
    C.第三象限 D.第四象限
    解析:z=eq \f(2i,1+i)=eq \f(2i1-i,1+i1-i)=1+i,所以eq \x\t(z)=1-i,故复数z的共轭复数对应的点位于第四象限。
    答案:D
    二、填空题
    6.(2013·江苏高考)设z=(2-i)2(i为虚数单位),则复数z的模为________。
    解析:z=(2-i)2=3-4i,所以|z|=|3-4i|=eq \r(32+-42)=5.
    答案:5
    7.若eq \f(3+bi,1-i)=a+bi(a,b为实数,i为虚数单位),则a+b=________。
    解析:eq \f(3+bi,1-i)=eq \f(3+bi1+i,2)
    =eq \f(1,2)[(3-b)+(3+b)i]=eq \f(3-b,2)+eq \f(3+b,2)i。
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a=\f(3-b,2),,\f(3+b,2)=b,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=0,,b=3.))∴a+b=3.
    答案:3
    8.当z=-eq \f(1-i,\r(2))时,z2 012+z2 014=________。
    解析:z=-eq \f(1-i,\r(2)),∴z2=eq \f(-2i,2)=-i,
    ∴z2 012=(-i)2 012=1,
    z2 014=(-i)2 014=-1,
    ∴z2 012+z2 014=1-1=0.
    答案:0
    三、解答题
    9.计算下列各题:
    (1)eq \f(1+i7,1-i)+eq \f(1-i7,1+i)-eq \f(3-4i2+2i3,4+3i);
    (2)eq \f(1,i)(eq \r(2)+eq \r(2)i)5+(eq \f(1,1+i))4+(eq \f(1+i,1-i))7;
    (3)(-eq \f(\r(3),2)-eq \f(1,2)i)12+(eq \f(2+2i,1-\r(3)i))8.
    解:(1)原式=[(1+i)2]3eq \f(1+i,1-i)+[(1-i)2]3·eq \f(1-i,1+i)-eq \f(83-4i1+i21+i,3-4ii)
    =(2i)3·i+(-2i)3·(-i)-eq \f(8·2i1+i,i)
    =8+8-16-16i=-16i。
    (2)eq \f(1,i)(eq \r(2)+eq \r(2)i)5+(eq \f(1,1+i))4+(eq \f(1+i,1-i))7
    =-i·(eq \r(2))5·[(1+i)2]2·(1+i)+[eq \f(1,1+i2)]2+i7
    =16eq \r(2)(-1+i)-eq \f(1,4)-i
    =-(16eq \r(2)+eq \f(1,4))+(16eq \r(2)-1)i。
    (3)(-eq \f(\r(3),2)-eq \f(1,2)i)12+(eq \f(2+2i,1-\r(3)i))8
    =(-i)12·(-eq \f(\r(3),2)-eq \f(1,2)i)12+(eq \f(1+i,\f(1,2)-\f(\r(3),2)i))8
    =(-eq \f(1,2)+eq \f(\r(3),2)i)12+eq \f([1+i2]4·\f(1,2)-\f(\r(3),2)i,[\f(1,2)-\f(\r(3),2)i3]3)
    =[(-eq \f(1,2)+eq \f(\r(3),2)i)3]4+(-8+8eq \r(3)i)
    =1-8+8eq \r(3)i=-7+8eq \r(3)i。
    10.复数z=eq \f(1+i2+31-i,2+i),若z2+eq \f(a,z)

    相关教案

    必修 第二册第七章 复数7.2 复数的四则运算优质教学设计:

    这是一份必修 第二册第七章 复数7.2 复数的四则运算优质教学设计,共8页。

    2021学年7.2 复数的四则运算教案:

    这是一份2021学年7.2 复数的四则运算教案,共8页。教案主要包含了第一课时,教学过程,第二课时等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第二册7.2 复数的四则运算教案及反思:

    这是一份高中数学人教A版 (2019)必修 第二册7.2 复数的四则运算教案及反思,共3页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map