2021-2022学年江苏省泰州市高港区达标名校中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.下面的图形是轴对称图形,又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
2.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )
A.16+16 B.16+8 C.24+16 D.4+4
3.设a,b是常数,不等式的解集为,则关于x的不等式的解集是( )
A. B. C. D.
4.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )
A.1 B.2 C.3 D.4
5.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为( )
A.2π B.4π C.6π D.8π
6.如图所示几何体的主视图是( )
A. B. C. D.
7.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
A. B. C. D.
8.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
9.计算(—2)2-3的值是( )
A、1 B、2 C、—1 D、—2
10.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( ).
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_____.
12.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.
13.计算(﹣a2b)3=__.
14.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.
15.已知,则______
16.二次根式中,x的取值范围是 .
三、解答题(共8题,共72分)
17.(8分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.
求证:DE是⊙O的切线;若DE=3,CE=2. ①求的值;②若点G为AE上一点,求OG+EG最小值.
18.(8分)计算:sin30°﹣+(π﹣4)0+|﹣|.
19.(8分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?
20.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.
(2)求乙组加工零件总量的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
21.(8分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:
(1)样本中的总人数为 人;扇形统计十图中“骑自行车”所在扇形的圆心角为 度;
(2)补全条形统计图;
(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
22.(10分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.
(1)求证:△ADC≌△FDB;
(2)求证:
(3)判断△ECG的形状,并证明你的结论.
23.(12分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.
(1)如图2,当AB⊥OM时,求证:AM=AC;
(2)求y关于x的函数关系式,并写出定义域;
(3)当△OAC为等腰三角形时,求x的值.
24.已知抛物线的开口向上顶点为P
(1)若P点坐标为(4,一1),求抛物线的解析式;
(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.
【详解】
解:第一个图形是轴对称图形,但不是中心对称图形;
第二个图形是中心对称图形,但不是轴对称图形;
第三个图形既是轴对称图形,又是中心对称图形;
第四个图形即是轴对称图形,又是中心对称图形;
∴既是轴对称图形,又是中心对称图形的有两个,
故选:B.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.
2、A
【解析】
分析出此三棱柱的立体图像即可得出答案.
【详解】
由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=×4=,所以侧面积之和为×2+4×4= 16+16,所以答案选择A项.
【点睛】
本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.
3、C
【解析】
根据不等式的解集为x< 即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a<0
【详解】
解不等式,
移项得:
∵解集为x<
∴ ,且a<0
∴b=-5a>0,
解不等式,
移项得:bx>a
两边同时除以b得:x>,
即x>-
故选C
【点睛】
此题考查解一元一次不等式,掌握运算法则是解题关键
4、C
【解析】
分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.
详解:121
∴对121只需进行3次操作后变为1.
故选C.
点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.
5、B
【解析】
先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.
【详解】
在△ABC中,依据勾股定理可知AB==8,
∵两等圆⊙A,⊙B外切,
∴两圆的半径均为4,
∵∠A+∠B=90°,
∴阴影部分的面积==4π.
故选:B.
【点睛】
本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.
6、C
【解析】
从正面看几何体,确定出主视图即可.
【详解】
解:几何体的主视图为
故选C.
【点睛】
本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.
7、A
【解析】
分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;
②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.
详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
概率为.
故选A.
点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
8、C
【解析】
A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
故选C.
9、A
【解析】本题考查的是有理数的混合运算
根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。
解答本题的关键是掌握好有理数的加法、乘方法则。
10、B
【解析】
如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.
【详解】
如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B
【点睛】
本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、乙.
【解析】
据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案.
【详解】
解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,
∴S乙2<S丁2<S甲2<S丙2,
∴二月份白菜价格最稳定的市场是乙;
故答案为:乙.
【点睛】
本题考查方差的意义.解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
12、3
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r
∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,
∴圆心距O1O2的取值范围为5-2
本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.
13、−a6b3
【解析】
根据积的乘方和幂的乘方法则计算即可.
【详解】
原式=(﹣a2b)3=−a6b3,故答案为−a6b3.
【点睛】
本题考查了积的乘方和幂的乘方,关键是掌握运算法则.
14、 (x﹣1)(x﹣2)
【解析】
根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.
【详解】
解:已知方程的两根为:x1=1,x2=2,可得:
(x﹣1)(x﹣2)=0,
∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).
【点睛】
一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)
15、34
【解析】
∵,∴=,
故答案为34.
16、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
三、解答题(共8题,共72分)
17、(1)证明见解析(2)① ②3
【解析】
(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;
(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;
②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.
【详解】
(1)连接OE
∵OA=OE,∴∠AEO=∠EAO
∵∠FAE=∠EAO,∴∠FAE=∠AEO
∴OE∥AF
∵DE⊥AF,∴OE⊥DE
∴DE是⊙O的切线
(2)①解:连接BE
∵直径AB ∴∠AEB=90°
∵圆O与BC相切
∴∠ABC=90°
∵∠EAB+∠EBA=∠EBA+∠CBE=90°
∴∠EAB=∠CBE
∴∠DAE=∠CBE
∵∠ADE=∠BEC=90°
∴△ADE∽△BEC
∴
②连接OF,交AE于G,
由①,设BC=2x,则AE=3x
∵△BEC∽△ABC ∴
∴
解得:x1=2,(不合题意,舍去)
∴AE=3x=6,BC=2x=4,AC=AE+CE=8
∴AB=,∠BAC=30°
∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°
∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形
由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.
故OG+EG最小值是3.
【点睛】
本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.
18、1.
【解析】
分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值.
详解:原式=﹣2+1+=1.
点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.
19、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.
【解析】
(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.
(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;
(3)根据函数的图象和交点坐标即可求得.
【详解】
⑴把C(6,-1)代入,得.
则反比例函数的解析式为,
把代入,得,
∴点D的坐标为(-2,3).
⑵将C(6,-1)、D(-2,3)代入,得
,解得.
∴一次函数的解析式为,
∴点B的坐标为(0,2),点A的坐标为(4,0).
∴,
在在中,
∴.
⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值
【点睛】
此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.
20、 (1)见解析(2)300(3)2小时
【解析】
解:(1)设甲组加工的零件数量y与时间x的函数关系式为.
根据题意,得,解得.
所以,甲组加工的零件数量y与时间x的函数关系式为:.
(2)当时,.
因为更换设备后,乙组工作效率是原来的2倍,
所以,.解得.
(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为
.
当0≤x≤2时,.解得.舍去.
当2
当3
所以,再经过2小时恰好装满第2箱.
21、 (1) 80、72;(2) 16人;(3) 50人
【解析】
(1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.
(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可.
(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可.
【详解】
解:(1)样本中的总人数为8÷10%=80人,
∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,
∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°
(2)骑自行车的人数为80×20%=16人,
补全图形如下:
(3)设原来开私家车的人中有x人改骑自行车,
由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,
解得:x≥50,
∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
【点睛】
本题主要考查统计图表和一元一次不等式的应用。
22、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;
(2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;
(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状.
【详解】
解:(1)∵AB=BC,BE平分∠ABC
∴BE⊥AC
∵CD⊥AB
∴∠ACD=∠ABE(同角的余角相等)
又∵CD=BD
∴△ADC≌△FDB
(2)∵AB=BC,BE平分∠ABC
∴AE=CE
则CE=AC
由(1)知:△ADC≌△FDB
∴AC=BF
∴CE=BF
(3)△ECG为等腰直角三角形,理由如下:
由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,
则∠EGC=2∠CBG=∠ABC=45°,
又∵BE⊥AC,
故△ECG为等腰直角三角形.
【点睛】
本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.
23、(1)证明见解析;(2) .();(3) .
【解析】
分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;
(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;
(3)分三种情况利用勾股定理或判断出不存在,即可得出结论.
详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.
∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.
∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,
∴AC=AM.
(2)如图2,过点D作DE∥AB,交OM于点E.
∵OB=OM,OD⊥BM,∴BD=DM.
∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.
∵DE∥AB,∴,
∴.()
(3)(i) 当OA=OC时.∵.在Rt△ODM中,.
∵.解得,或(舍).
(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.
(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.
即:当△OAC为等腰三角形时,x的值为.
点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.
24、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
【解析】
(1)将P(4,-1)代入,可求出解析式
(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
(3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
【详解】
解:(1)由此抛物线顶点为P(4,-1),
所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
所以抛物线解析式为:;
(2)由此抛物线经过点C(4,-1),
所以 一1=16a+4b+3,即b=-4a-1.
因为抛物线的开口向上,则有
其对称轴为直线,而
所以当-1≤x≤2时,y随着x的增大而减小
当x=-1时,y=a+(4a+1)+3=4+5a
当x=2时,y=4a-2(4a+1)+3=1-4a
所以当-1≤x≤2时,1-4a≤y≤4+5a;
(3)当a=1时,抛物线的解析式为y=x2+bx+3
∴抛物线的对称轴为直线
由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
分别代入可得,当x=0时,y=3
当x=1时,y=b+4
当x=-时,y=-+3
①当一<0,即b>0时,3≤y≤b+4,
由b+4=6解得b=2
②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
由b+4=6解得b=2(舍去);
③当 ,即b<-2时,b+4≤y≤3,
由b+4=-6解得b=-10
综上,b=2或-10
【点睛】
本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,下列命题中真命题是,点M等内容,欢迎下载使用。
江苏省泰州市高港区达标名校2022年中考二模数学试题含解析: 这是一份江苏省泰州市高港区达标名校2022年中考二模数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年江苏省泰州市高港区达标名校中考数学模拟精编试卷含解析: 这是一份2022年江苏省泰州市高港区达标名校中考数学模拟精编试卷含解析,共24页。