2021-2022学年江苏省盐城市射阳外国语校中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.实数﹣5.22的绝对值是( )
A.5.22 B.﹣5.22 C.±5.22 D.
2.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )
A. B.4 C. D.
3.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对 B.2对 C.3对 D.4对
4.已知点、都在反比例函数的图象上,则下列关系式一定正确的是( )
A. B. C. D.
5.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)
6.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)
7.下列运算正确的是( )
A.﹣3a+a=﹣4a B.3x2•2x=6x2
C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x4
8.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 B.42、38 C.40、42 D.42、40
9.数据4,8,4,6,3的众数和平均数分别是( )
A.5,4 B.8,5 C.6,5 D.4,5
10.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1
11.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_____cm.
12.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______
13.当a=3时,代数式的值是______.
14.分解因式:__________.
15.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为 .
16.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.
17.已知是方程组的解,则3a﹣b的算术平方根是_____.
三、解答题(共7小题,满分69分)
18.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
19.(5分)综合与实践﹣猜想、证明与拓广
问题情境:
数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.
猜想证明
(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;
(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:
小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…
小丽:连接AF,图中出现新的等腰三角形,如△AFB,…
小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.
请你参考同学们的思路,完成证明;
(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;
联系拓广:
(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).
20.(8分)如图,已知:AD 和 BC 相交于点 O,∠A=∠C,AO=2,BO=4,OC=3,求 OD 的长.
21.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
22.(10分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
23.(12分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
24.(14分)已知关于的二次函数
(1)当时,求该函数图像的顶点坐标.
(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值
(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据绝对值的性质进行解答即可.
【详解】
实数﹣5.1的绝对值是5.1.
故选A.
【点睛】
本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.
2、B
【解析】
求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
【详解】
解:∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEB=∠ADC=90°,
∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
∵∠AFE=∠BFD,
∴∠EAF=∠FBD,
∵∠ADB=90°,∠ABC=45°,
∴∠BAD=45°=∠ABC,
∴AD=BD,
在△ADC和△BDF中 ,
∴△ADC≌△BDF,
∴DF=CD=4,
故选:B.
【点睛】
此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
3、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
4、A
【解析】
分析:根据反比例函数的性质,可得答案.
详解:由题意,得
k=-3,图象位于第二象限,或第四象限,
在每一象限内,y随x的增大而增大,
∵3<6,
∴x1<x2<0,
故选A.
点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.
5、B
【解析】
作出图形,结合图形进行分析可得.
【详解】
如图所示:
①以AC为对角线,可以画出▱AFCB,F(-3,1);
②以AB为对角线,可以画出▱ACBE,E(1,-1);
③以BC为对角线,可以画出▱ACDB,D(3,1),
故选B.
6、D
【解析】
分析:作BC⊥x轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A′与点B重合,于是可得点A′的坐标.
详解:作BC⊥x轴于C,如图,
∵△OAB是边长为4的等边三角形
∴
∴A点坐标为(−4,0),O点坐标为(0,0),
在Rt△BOC中,
∴B点坐标为
∵△OAB按顺时针方向旋转,得到△OA′B′,
∴
∴点A′与点B重合,即点A′的坐标为
故选D.
点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.
7、D
【解析】
根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.
【详解】
A. ﹣3a+a=﹣2a,故不正确;
B. 3x2•2x=6x3,故不正确;
C. 4a2﹣5a2=-a2 ,故不正确;
D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;
故选D.
【点睛】
本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.
8、D
【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
故选D.
【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
9、D
【解析】
根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可
【详解】
∵4出现了2次,出现的次数最多,
∴众数是4;
这组数据的平均数是:(4+8+4+6+3)÷5=5;
故选D.
10、B
【解析】
设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.
【详解】
设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)
∵y=0时,x=-2或x=3,
∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),
∵1﹣(x﹣3)(x+2)=0,
∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,
∵-1<0,
∴两个抛物线的开口向下,
∴x1<﹣2<3<x2,
故选B.
【点睛】
本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1.
【解析】
根据在△ABC中,∠A:∠B:∠C=1:2:3,三角形内角和等于180°可得∠A,∠B,∠C的度数,它的最小边的长是2cm,从而可以求得最大边的长.
【详解】
∵在△ABC中,∠A:∠B:∠C=1:2:3,
∴
∵最小边的长是2cm,
∴a=2.
∴c=2a=1cm.
故答案为:1.
【点睛】
考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.
12、
【解析】
【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.
【详解】设反比例函数解析式为y=,
由题意得:m2=2m×(-1),
解得:m=-2或m=0(不符题意,舍去),
所以点A(-2,-2),点B(-4,1),
所以k=4,
所以反比例函数解析式为:y=,
故答案为y=.
【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.
13、1.
【解析】
先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
【详解】
原式=÷
=•
=,
当a=3时,原式==1,
故答案为:1.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
14、a(a -4)2
【解析】
首先提取公因式a,进而利用完全平方公式分解因式得出即可.
【详解】
故答案为:
【点睛】
本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
15、1
【解析】
试题分析:根据题意可得圆心角的度数为:,则S==1.
考点:扇形的面积计算.
16、
【解析】
试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.
由题意得圆锥的母线长
则所得到的侧面展开图形面积.
考点:勾股定理,圆锥的侧面积公式
点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.
17、2.
【解析】
灵活运用方程的性质求解即可。
【详解】
解:由是方程组的解,可得满足方程组,
由①+②的,3x-y=8,即可3a-b=8,
故3a﹣b的算术平方根是,
故答案:
【点睛】
本题主要考查二元一次方程组的性质及其解法。
三、解答题(共7小题,满分69分)
18、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
【解析】
(1)当t=3时,点E为AB的中点,
∵A(8,0),C(0,6),
∴OA=8,OC=6,
∵点D为OB的中点,
∴DE∥OA,DE=OA=4,
∵四边形OABC是矩形,
∴OA⊥AB,
∴DE⊥AB,
∴∠OAB=∠DEA=90°,
又∵DF⊥DE,
∴∠EDF=90°,
∴四边形DFAE是矩形,
∴DF=AE=3;
(2)∠DEF的大小不变;理由如下:
作DM⊥OA于M,DN⊥AB于N,如图2所示:
∵四边形OABC是矩形,
∴OA⊥AB,
∴四边形DMAN是矩形,
∴∠MDN=90°,DM∥AB,DN∥OA,
∴, ,
∵点D为OB的中点,
∴M、N分别是OA、AB的中点,
∴DM=AB=3,DN=OA=4,
∵∠EDF=90°,
∴∠FDM=∠EDN,
又∵∠DMF=∠DNE=90°,
∴△DMF∽△DNE,
∴,
∵∠EDF=90°,
∴tan∠DEF=;
(3)作DM⊥OA于M,DN⊥AB于N,
若AD将△DEF的面积分成1:2的两部分,
设AD交EF于点G,则点G为EF的三等分点;
①当点E到达中点之前时,如图3所示,NE=3﹣t,
由△DMF∽△DNE得:MF=(3﹣t),
∴AF=4+MF=﹣t+,
∵点G为EF的三等分点,
∴G(,),
设直线AD的解析式为y=kx+b,
把A(8,0),D(4,3)代入得: ,
解得: ,
∴直线AD的解析式为y=﹣x+6,
把G(,)代入得:t=;
②当点E越过中点之后,如图4所示,NE=t﹣3,
由△DMF∽△DNE得:MF=(t﹣3),
∴AF=4﹣MF=﹣t+,
∵点G为EF的三等分点,
∴G(,),
代入直线AD的解析式y=﹣x+6得:t=;
综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
考点:四边形综合题.
19、 (1) GF=GD,GF⊥GD;(2)见解析;(3)见解析;(4) 90°﹣.
【解析】
(1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;
(2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;
(3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;
(4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.
【详解】
解:(1)GF=GD,GF⊥GD,
理由:∵四边形ABCD是正方形,
∴∠ABD=∠ADB=45°,∠BAD=90°,
∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,
∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,
∴∠DBF=90°,
∴GF⊥GD,
∵∠BAD=∠BAF=90°,
∴点F,A,D在同一条线上,
∵∠F=∠ADB,
∴GF=GD,
故答案为GF=GD,GF⊥GD;
(2)连接AF,∵点D关于直线AE的对称点为点F,
∴直线AE是线段DF的垂直平分线,
∴AF=AD,GF=GD,
∴∠1=∠2,∠3=∠FDG,
∴∠1+∠3=∠2+∠FDG,
∴∠AFG=∠ADG,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
设∠BAF=n,
∴∠FAD=90°+n,
∵AF=AD=AB,
∴∠FAD=∠ABF,
∴∠AFB+∠ABF=180°﹣n,
∴∠AFB+∠ADG=180°﹣n,
∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,
∴GF⊥DG,
(3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,
∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,
∵四边形ABCD是正方形,
∴BC=CD,∠BCD=90°,
∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,
∴∠FDG=∠BDC,
∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,
∴∠FDB=∠GDC,
在Rt△BDC中,sin∠DFG==sin45°=,
在Rt△BDC中,sin∠DBC==sin45°=,
∴,
∴,
∴△BDF∽△CDG,
∵∠FDB=∠GDC,
∴∠DGC=∠DFG=45°,
∴∠DGC=∠FDG,
∴CG∥DF;
(4)90°﹣,理由:如图3,连接AF,BD,
∵点D与点F关于AE对称,
∴AE是线段DF的垂直平分线,
∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,
∴∠DAM=90°﹣∠2=90°﹣∠1,
∴∠DAF=2∠DAM=180°﹣2∠1,
∵四边形ABCD是菱形,
∴AB=AD,
∴∠AFB=∠ABF=∠DFG+∠1,
∵BD是菱形的对角线,
∴∠ADB=∠ABD=α,
在四边形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°
∴2∠DFG+2∠1+α﹣2∠1=180°,
∴∠DFG=90°﹣.
【点睛】
本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.
20、OD=6.
【解析】
(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题.
【详解】
在△AOB与△COD中,
,
∴△AOB~△COD,
∴,
∴,
∴OD=6.
【点睛】
该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求.
21、(1)y=﹣20x+1600;
(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)超市每天至少销售粽子440盒.
【解析】
试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;
(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.
试题解析:(1)由题意得,==;
(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.
考点:二次函数的应用.
22、1人
【解析】
解:设九年级学生有x人,根据题意,列方程得:
,整理得0.8(x+88)=x,解之得x=1.
经检验x=1是原方程的解.
答:这个学校九年级学生有1人.
设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可.
23、(1)y=-(x-3)2+5(2)5
【解析】
(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;
(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.
【详解】
(1)设此抛物线的表达式为y=a(x-3)2+5,
将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得
∴此抛物线的表达式为
(2)∵A(1,3),抛物线的对称轴为直线x=3,
∴B(5,3).
令x=0,则
∴△ABC的面积
【点睛】
考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
24、(1) ,顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1 ,②当a<0时,y1>y2 .
【解析】
试题分析:
(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;
(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;
(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a<0两种情况分别讨论即可y1和y2的大小关系了.
试题解析:
(1)把a=2,b=4代入得:,
∴此时二次函数的图象的顶点坐标为(1,-4);
(2)由题意,把(m,t)和(-m,-t)代入得:
①,②,
由①+②得:,解得:;
(3)把点(1,0)代入得a-b-2=0,
∴b=a-2,
∴此时该二次函数图象的对称轴为直线:,
①当a>0时,,,
∵此时,且抛物线开口向上,
∴中,点B距离对称轴更远,
∴y1
∵此时,且抛物线开口向下,
∴中,点B距离对称轴更远,
∴y1>y2;
综上所述,当a>0时,y1
点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;
2023年江苏省盐城市射阳实验中学中考数学二模试卷(含解析): 这是一份2023年江苏省盐城市射阳实验中学中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年江苏省盐城市射阳县中考数学一模试卷(含解析): 这是一份2023年江苏省盐城市射阳县中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年江苏省盐城市射阳县中考数学一模试卷(含解析): 这是一份2023年江苏省盐城市射阳县中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。