年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年江苏省扬州市邗江实验中考试题猜想数学试卷含解析

    2021-2022学年江苏省扬州市邗江实验中考试题猜想数学试卷含解析第1页
    2021-2022学年江苏省扬州市邗江实验中考试题猜想数学试卷含解析第2页
    2021-2022学年江苏省扬州市邗江实验中考试题猜想数学试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省扬州市邗江实验中考试题猜想数学试卷含解析

    展开

    这是一份2021-2022学年江苏省扬州市邗江实验中考试题猜想数学试卷含解析,共17页。试卷主要包含了某一公司共有51名员工,若与 互为相反数,则x的值是,的倒数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为(  )
    A.4.995×1011 B.49.95×1010
    C.0.4995×1011 D.4.995×1010
    2.若实数 a,b 满足|a|>|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )
    A. B. C. D.
    3.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的(  )
    A.平均数 B.中位数 C.众数 D.方差
    4.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为(  )
    A.0.286×105 B.2.86×105 C.28.6×103 D.2.86×104
    5.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为(  )
    A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
    6.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是(  )

    A.13 B.14 C.15 D.16
    7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
    A.平均数和中位数不变 B.平均数增加,中位数不变
    C.平均数不变,中位数增加 D.平均数和中位数都增大
    8.若与 互为相反数,则x的值是(  )
    A.1 B.2 C.3 D.4
    9.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是
    A.180个,160个 B.170个,160个
    C.170个,180个 D.160个,200个
    10.的倒数是( )
    A. B.3 C. D.
    11.下列长度的三条线段能组成三角形的是
    A.2,3,5 B.7,4,2
    C.3,4,8 D.3,3,4
    12.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
    鞋的尺码/cm
    23
    23.5
    24
    24.5
    25
    销售量/双
    1
    3
    3
    6
    2
    则这15双鞋的尺码组成的一组数据中,众数和中位数分别为(  )
    A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.

    14.从-5,-,-,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为______.
    15.因式分解:4ax2﹣4ay2=_____.
    16.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.

    17.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .
    18.已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第__________象限.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.

    (1)求直线AB和反比例函数的解析式;
    (1)求△OCD的面积.
    20.(6分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.

    21.(6分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.

    22.(8分)计算:﹣|﹣2|+()﹣1﹣2cos45°
    23.(8分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
    在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
    24.(10分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
    25.(10分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
    项目
    选手
    服装
    普通话
    主题
    演讲技巧
    李明
    85
    70
    80
    85
    张华
    90
    75
    75
    80
    结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.

    26.(12分)解分式方程:.
    27.(12分)先化简,再求值:,其中x=-5



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    将499.5亿用科学记数法表示为:4.995×1.
    故选D.
    【点睛】
    此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、D
    【解析】
    根据绝对值的意义即可解答.
    【详解】
    由|a|>|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D.
    【点睛】
    本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.
    3、B
    【解析】
    由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的
    中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8
    名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的
    分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
    故选B.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反
    映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统
    计量进行合理的选择和恰当的运用.
    4、D
    【解析】
    用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可
    【详解】
    28600=2.86×1.故选D.
    【点睛】
    此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键
    5、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    180000=1.8×105,
    故选A.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    6、C
    【解析】
    解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.

    因为六边形ABCDEF的六个角都是120°,
    所以六边形ABCDEF的每一个外角的度数都是60°.
    所以都是等边三角形.
    所以



    所以六边形的周长为3+1+4+2+2+3=15;
    故选C.
    7、B
    【解析】
    本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    【详解】
    解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然

    由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
    故选B.
    【点睛】
    本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
    8、D
    【解析】
    由题意得+=0,
    去分母3x+4(1-x)=0,
    解得x=4.故选D.
    9、B
    【解析】
    根据中位数和众数的定义分别进行解答即可.
    【详解】
    解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;
    160出现了2次,出现的次数最多,则众数是160;
    故选B.
    【点睛】
    此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
    10、A
    【解析】
    解:的倒数是.
    故选A.
    【点睛】
    本题考查倒数,掌握概念正确计算是解题关键.
    11、D
    【解析】
    试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;
    B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;
    C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;
    D.∵3+3>4,∴3,3,4能组成三角形,故D正确;
    故选D.
    12、A
    【解析】
    【分析】根据众数和中位数的定义进行求解即可得.
    【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
    这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
    故选A.
    【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(6053,2).
    【解析】
    根据前四次的坐标变化总结规律,从而得解.
    【详解】
    第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…
    发现点P的位置4次一个循环,
    ∵2017÷4=504余1,
    P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,
    ∴P2017(6053,2),
    故答案为(6053,2).
    考点:坐标与图形变化﹣旋转;规律型:点的坐标.
    14、
    【解析】
    七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:
    【详解】
    这七个数中有两个负整数:-5,-1
    所以,随机抽取一个数,恰好为负整数的概率是:
    故答案为
    【点睛】
    本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.
    15、4a(x﹣y)(x+y)
    【解析】
    首先提取公因式4a,再利用平方差公式分解因式即可.
    【详解】
    4ax2-4ay2=4a(x2-y2)
    =4a(x-y)(x+y).
    故答案为4a(x-y)(x+y).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    16、1
    【解析】
    作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)
    ∵∠C=90°,AC=BC=6cm,
    ∴△ABC为直角三角形,
    ∴∠A=∠B=45°,
    ∴△APE和△PBD为等腰直角三角形,
    ∴PE=AE=AP=tcm,BD=PD,
    ∴CE=AC﹣AE=(6﹣t)cm,
    ∵四边形PECD为矩形,
    ∴PD=EC=(6﹣t)cm,
    ∴BD=(6﹣t)cm,
    ∴QD=BD﹣BQ=(6﹣1t)cm,
    在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,
    在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,
    ∵四边形QPCP′为菱形,
    ∴PQ=PC,
    ∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,
    ∴t1=1,t1=6(舍去),
    ∴t的值为1.
    故答案为1.

    【点睛】
    此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .
    17、
    【解析】
    试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.
    考点:概率
    18、【解析】
    直接利用反比例函数的增减性进而得出图象的分布.
    【详解】
    ∵反比例函数y(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在的象限是第一、三象限.
    故答案为:一、三.
    【点睛】
    本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1),;(1)2.
    【解析】
    试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
    (1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
    试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
    (1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
    考点:反比例函数与一次函数的交点问题.
    20、(1)见解析(2)见解析
    【解析】
    (1)根据旋转变换的定义和性质求解可得;
    (2)根据位似变换的定义和性质求解可得.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求;

    (2)如图所示,△DEF即为所求.
    【点睛】
    本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.
    21、(1)抽样调查;12;3;(2)60;(3).
    【解析】
    试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;
    (2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;
    (3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.
    试题解析:(1)抽样调查,
    所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:

    (2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);
    (3)画树状图如下:

    列表如下:

    共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.
    22、+1
    【解析】
    分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.
    详解:原式=2﹣2+3﹣2×
    =2+1﹣
    =+1.
    点睛:本题主要考查了实数运算,正确化简各数是解题的关键.
    23、(1)见解析;(2)见解析;(3)见解析,.
    【解析】
    (1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
    【详解】
    解:(1)如图所示;
    (2)如图所示;(3)如图所示;CE=.

    【点睛】
    本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
    24、(1);(2).
    【解析】
    (1)直接根据概率公式求解;
    (2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
    【详解】
    (1)正数为2,所以该球上标记的数字为正数的概率为;
    (2)画树状图为:

    共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    25、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
    【解析】
    (1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
    (2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
    (3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
    【详解】
    (1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
    普通话项目对应扇形的圆心角是:360°×20%=72°;
    (2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
    (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
    张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
    ∵80.5>78.5,
    ∴李明的演讲成绩好,
    故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
    【点睛】
    本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
    26、.
    【解析】
    试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.
    试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.
    考点:解分式方程.
    27、,-
    【解析】
    分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.
    详解:


    当时,原式.
    点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.

    相关试卷

    江苏省扬州市部分区、县2021-2022学年中考试题猜想数学试卷含解析:

    这是一份江苏省扬州市部分区、县2021-2022学年中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,计算÷9的值是等内容,欢迎下载使用。

    2022年江苏省扬州市江都区实验中考试题猜想数学试卷含解析:

    这是一份2022年江苏省扬州市江都区实验中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如果将直线l1,下列说法不正确的是等内容,欢迎下载使用。

    2022届江苏省扬州市江都区实验重点中学中考试题猜想数学试卷含解析:

    这是一份2022届江苏省扬州市江都区实验重点中学中考试题猜想数学试卷含解析,共18页。试卷主要包含了下列计算正确的是,下列图标中,是中心对称图形的是,cs30°的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map