终身会员
搜索
    上传资料 赚现金
    2021-2022学年辽宁省沈阳市五校中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2021-2022学年辽宁省沈阳市五校中考数学模拟预测题含解析01
    2021-2022学年辽宁省沈阳市五校中考数学模拟预测题含解析02
    2021-2022学年辽宁省沈阳市五校中考数学模拟预测题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年辽宁省沈阳市五校中考数学模拟预测题含解析

    展开
    这是一份2021-2022学年辽宁省沈阳市五校中考数学模拟预测题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线y=3,化简等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是(  )
    A.千里江山图
    B.京津冀协同发展
    C.内蒙古自治区成立七十周年
    D.河北雄安新区建立纪念
    2.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )

    A.1 B.2 C.3 D.4
    3.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是(  )

    A.10 B. C. D.15
    4.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是(  )

    A.国 B.厉 C.害 D.了
    5.实数a,b在数轴上的位置如图所示,以下说法正确的是( )

    A.a+b=0 B.b<a C.ab>0 D.|b|<|a|
    6.抛物线y=3(x﹣2)2+5的顶点坐标是(  )
    A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
    7.化简:-,结果正确的是(  )
    A.1 B. C. D.
    8.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式(  )

    A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
    C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
    9.若正六边形的边长为6,则其外接圆半径为( )
    A.3 B.3 C.3 D.6
    10.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
    A.2 B.3 C.5 D.7
    11.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

    A. B.2 C. D.2
    12.下列图形是中心对称图形的是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为 (用含n的代数式表示).

    14.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角 °.
    15.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.

    16.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.

    17.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“<”或“=”).
    18.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,四边形AOBC是正方形,点C的坐标是(4,0).正方形AOBC的边长为   ,点A的坐标是   .将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).

    20.(6分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根
    21.(6分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.

    22.(8分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.

    求证:(1)AE=BF;(2)AE⊥BF.
    23.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
    (1)求证:四边形ACDF是平行四边形;
    (2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

    24.(10分)如图,在四边形ABCD中,∠A=∠BCD=90°,,CE⊥AD于点E.

    (1)求证:AE=CE;
    (2)若tanD=3,求AB的长.
    25.(10分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.
    26.(12分)如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
    (1)当CM:CB=1:4时,求CF的长.
    (2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
    (3)当△ABM∽△EFN时,求CM的长.

    27.(12分)计算:.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
    B选项不是中心对称图形,故本选项错误;
    C选项为中心对称图形,故本选项正确;
    D选项不是中心对称图形,故本选项错误.
    故选C.
    【点睛】
    本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
    2、B
    【解析】
    先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.
    【详解】
    解:在Rt△ABO中,sin∠OAB===,
    ∴∠OAB=60°,
    ∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,
    ∴∠CAB=30°,OC⊥AC,
    ∴∠OAC=60°﹣30°=30°,
    在Rt△OAC中,OC=OA=1.
    故选B.
    【点睛】
    本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.
    3、C
    【解析】
    A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.
    【详解】
    A,C之间的距离为6,
    2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,
    在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,
    ∴m=6,
    2020﹣2017=3,故点Q与点P的水平距离为3,

    解得k=6,
    双曲线
    1+3=4,
    即点Q离x轴的距离为,

    ∵四边形PDEQ的面积是.
    故选:C.
    【点睛】
    考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.
    4、A
    【解析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
    【详解】
    ∴有“我”字一面的相对面上的字是国.
    故答案选A.
    【点睛】
    本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.
    5、D
    【解析】
    根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.
    【详解】
    A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;
    B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;
    C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;
    D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.
    ∴ 选D.
    6、C
    【解析】
    根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
    【详解】
    ∵抛物线解析式为y=3(x-2)2+5,
    ∴二次函数图象的顶点坐标是(2,5),
    故选C.
    【点睛】
    本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
    7、B
    【解析】
    先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
    【详解】

    【点睛】
    本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
    8、B
    【解析】
    根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
    【详解】
    ∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
    ∴(a﹣b)2=a2﹣2ab+b2,
    故选B.
    【点睛】
    本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
    9、D
    【解析】
    连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
    【详解】
    如图为正六边形的外接圆,ABCDEF是正六边形,
    ∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.

    所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
    故选D.
    【点睛】
    本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
    10、C
    【解析】
    试题解析:∵这组数据的众数为7,
    ∴x=7,
    则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
    中位数为:1.
    故选C.
    考点:众数;中位数.
    11、A
    【解析】
    试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
    解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
    ∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
    ∴AB=2EF,DC=DF+CF=8,
    作DH⊥BC于H,
    ∵AD∥BC,∠B=90°,
    ∴四边形ABHD为矩形,
    ∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
    在Rt△DHC中,DH==2,
    ∴EF=DH=.
    故选A.

    点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
    12、B
    【解析】
    根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
    A、不是中心对称图形,故本选项错误;
    B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误.
    故选B.
    考点:中心对称图形.
    【详解】
    请在此输入详解!

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4n+1
    【解析】
    分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.
    【详解】
    解:第一个图案正三角形个数为6=1+4;
    第二个图案正三角形个数为1+4+4=1+1×4;
    第三个图案正三角形个数为1+1×4+4=1+3×4;
    …;
    第n个图案正三角形个数为1+(n﹣1)×4+4=1+4n=4n+1.
    故答案为4n+1.
    考点:规律型:图形的变化类.
    14、1
    【解析】
    试题分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.
    解:∵侧面积为15πcm2,
    ∴圆锥侧面积公式为:S=πrl=π×3×l=15π,
    解得:l=5,
    ∴扇形面积为15π=,
    解得:n=1,
    ∴侧面展开图的圆心角是1度.
    故答案为1.
    考点:圆锥的计算.
    15、1
    【解析】
    先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.
    【详解】
    解:∵EF⊥BD,∠AEO=120°,
    ∴∠EDO=30°,∠DEO=60°,
    ∵四边形ABCD是矩形,
    ∴∠OBF=∠OCF=30°,∠BFO=60°,
    ∴∠FOC=60°-30°=30°,
    ∴OF=CF,
    又∵Rt△BOF中,BO=BD=AC=,
    ∴OF=tan30°×BO=1,
    ∴CF=1,
    故答案为:1.
    【点睛】
    本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.
    16、1.267×102
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.
    【详解】
    解:126 700=1.267×102.
    故答案为1.267×102.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    17、>
    【解析】
    分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
    详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
    故答案为>.
    点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.
    18、4
    【解析】
    连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.
    【详解】
    解:连接OP、OB,

    ∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,
    图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,
    又∵点P是半圆弧AC的中点,OA=OC,
    ∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,
    ∴两部分面积之差的绝对值是
    点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).
    【解析】
    (1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
    (2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;
    (3)根据P、Q点在不同的线段上运动情况,可分为三种列式①当点P、Q分别在OA、OB时,②当点P在OA上,点Q在BC上时,③当点P、Q在AC上时,可方程得出t.
    【详解】
    解:(1)连接AB,与OC交于点D,
    四边形是正方形,
    ∴△OCA为等腰Rt△,
    ∴AD=OD=OC=2,
    ∴点A的坐标为.

    4,.
    (2)如图
    ∵ 四边形是正方形,
    ∴,.
    ∵ 将正方形绕点顺时针旋转,
    ∴ 点落在轴上.
    ∴.
    ∴ 点的坐标为.
    ∵,
    ∴.
    ∵ 四边形,是正方形,
    ∴,.
    ∴,.
    ∴.
    ∴.
    ∵,

    ∴ .
    ∴旋转后的正方形与原正方形的重叠部分的面积为.
    (3)设t秒后两点相遇,3t=16,∴t=
    ①当点P、Q分别在OA、OB时,
    ∵,OP=t,OQ=2t
    ∴不能为等腰三角形
    ②当点P在OA上,点Q在BC上时如图2,

    当OQ=QP,QM为OP的垂直平分线,
    OP=2OM=2BQ,OP=t,BQ=2t-4,
    t=2(2t-4),
    解得:t=.
    ③当点P、Q在AC上时,
    不能为等腰三角形
    综上所述,当时是等腰三角形
    【点睛】
    此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.
    20、2m2+2m+5;1;
    【解析】
    先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.
    【详解】
    解:原式=2(m2﹣2m+1)+1m+3,
    =2m2﹣4m+2+1m+3=2m2+2m+5,
    ∵m是方程2x2+2x﹣1=0的根,
    ∴2m2+2m﹣1=0,即2m2+2m=1,
    ∴原式=2m2+2m+5=1.
    【点睛】
    此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.
    21、(1)矩形的周长为4m;(2)矩形的面积为1.
    【解析】
    (1)根据题意和矩形的周长公式列出代数式解答即可.
    (2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.
    【详解】
    (1)矩形的长为:m﹣n,
    矩形的宽为:m+n,
    矩形的周长为:2[(m-n)+(m+n)]=4m;
    (2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,
    当m=7,n=4时,S=72-42=1.
    【点睛】
    本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.
    22、见解析
    【解析】
    (1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;
    (2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF
    【详解】
    解:(1)证明:在△AEO与△BFO中,
    ∵Rt△OAB与Rt△EOF等腰直角三角形,
    ∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
    ∴△AEO≌△BFO,
    ∴AE=BF;
    ( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO

    由(1)知:∠OAC=∠OBF,
    ∴∠BDA=∠AOB=90°,
    ∴AE⊥BF.
    23、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    24、(1)见解析;(2)AB=4
    【解析】
    (1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;
    (2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.
    【详解】
    (1)证明:
    过点B作BH⊥CE于H,如图1.
    ∵CE⊥AD,
    ∴∠BHC=∠CED=90°,∠1+∠D=90°.
    ∵∠BCD=90°,
    ∴∠1+∠2=90°,
    ∴∠2=∠D.
    又BC=CD
    ∴△BHC≌△CED(AAS).
    ∴BH=CE.
    ∵BH⊥CE,CE⊥AD,∠A=90°,
    ∴四边形ABHE是矩形,
    ∴AE=BH.
    ∴AE=CE.
    (2)∵四边形ABHE是矩形,
    ∴AB=HE.
    ∵在Rt△CED中,,
    设DE=x,CE=3x,
    ∴.
    ∴x=2.
    ∴DE=2,CE=3.
    ∵CH=DE=2.
    ∴AB=HE=3-2=4.

    【点睛】
    本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.
    25、(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵
    【解析】
    试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;
    (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.
    试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,
    可得:,
    解得:,
    答:A种树苗的单价为200元,B种树苗的单价为300元.
    (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,
    可得:200a+300(30﹣a)≤8000,
    解得:a≥10,
    答:A种树苗至少需购进10棵.
    考点:1.一元一次不等式的应用;2.二元一次方程组的应用
    26、 (1) CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.
    【解析】
    (1)如图1中,作AH⊥BC于H.首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;
    (2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM•EB,由此构建函数关系式即可解决问题;
    (3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.想办法证明CM=CN,MN=DN+HM即可解决问题;
    【详解】
    解:(1)如图1中,作AH⊥BC于H.

    ∵CD⊥BC,AD∥BC,
    ∴∠BCD=∠D=∠AHC=90°,
    ∴四边形AHCD是矩形,
    ∵AD=DC=1,
    ∴四边形AHCD是正方形,
    ∴AH=CH=CD=1,
    ∵∠B=45°,
    ∴AH=BH=1,BC=2,
    ∵CM=BC=,CM∥AD,
    ∴=,
    ∴=,
    ∴CF=1.
    (2)如图1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,
    ∵∠AEM=∠AEB,∠EAM=∠B,
    ∴△EAM∽△EBA,
    ∴=,
    ∴AE2=EM•EB,
    ∴1+(1+y)2=(x+y)(y+2),
    ∴y=,
    ∵2﹣2x≥0,
    ∴0≤x≤1.
    (3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.

    则△ADN≌△AHG,△MAN≌△MAG,
    ∴MN=MG=HM+GH=HM+DN,
    ∵△ABM∽△EFN,
    ∴∠EFN=∠B=45°,
    ∴CF=CE,
    ∵四边形AHCD是正方形,
    ∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,
    ∴△AHE≌△ADF,
    ∴∠AEH=∠AFD,
    ∵∠AEH=∠DAN,∠AFD=∠HAM,
    ∴∠HAM=∠DAN,
    ∴△ADN≌△AHM,
    ∴DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,
    ∴x+x=1,
    ∴x=﹣1,
    ∴CM=2﹣.
    【点睛】
    本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明△EAM∽△EBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.
    27、
    【解析】
    直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.
    【详解】
    原式=9﹣2+1﹣2=.
    【点睛】
    本题考查了实数运算,正确化简各数是解题的关键.

    相关试卷

    重庆市育才成功校2021-2022学年中考数学模拟预测题含解析: 这是一份重庆市育才成功校2021-2022学年中考数学模拟预测题含解析,共24页。

    辽宁省沈阳市皇姑区2021-2022学年中考押题数学预测卷含解析: 这是一份辽宁省沈阳市皇姑区2021-2022学年中考押题数学预测卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果为,如图等内容,欢迎下载使用。

    贵州省水城实验校2021-2022学年中考数学模拟预测题含解析: 这是一份贵州省水城实验校2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,在数轴上表示不等式2,在平面直角坐标系中,点等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map