2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为( )
A. B. C. D.
2.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )
A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°
3.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1 B.2 C.3 D.4
4.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是( )
A. B. C. D.
5.下列各运算中,计算正确的是( )
A. B.
C. D.
6.如图: 在中,平分,平分,且交于,若,则等于( )
A.75 B.100 C.120 D.125
7.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )
A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
8.若二次函数的图象经过点(﹣1,0),则方程的解为( )
A., B., C., D.,
9.下列各运算中,计算正确的是( )
A.a12÷a3=a4 B.(3a2)3=9a6
C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a2
10.如图是一个几何体的三视图,则这个几何体是( )
A. B. C. D.
11.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为( )
A. B. C. D.
12.对于函数y=,下列说法正确的是( )
A.y是x的反比例函数 B.它的图象过原点
C.它的图象不经过第三象限 D.y随x的增大而减小
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.
14.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程____________.
15.计算(+1)(-1)的结果为_____.
16.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.
17.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
18.如图,在△ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B=____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.
(1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;
(2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:
(3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由.
20.(6分)先化简,再求值:,其中a满足a2+2a﹣1=1.
21.(6分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
(1)本次调查的学生有多少人?
(2)补全上面的条形统计图;
(3)扇形统计图中C对应的中心角度数是 ;
(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
22.(8分)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.
23.(8分)解不等式组:,并将它的解集在数轴上表示出来.
24.(10分)如图,在△ABC中,AB=AC,点,在边上,.求证:.
25.(10分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.
(1)求证:;
(2)请探究线段DE,CE的数量关系,并说明理由;
(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.
26.(12分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
求证:AB=DE
27.(12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
设BD=a,则OC=3a.
∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
同理,可求出点D的坐标为(1﹣a,a).
∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.
2、D
【解析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
【详解】
∵直线EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故选D.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
3、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
4、A
【解析】
根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.
【详解】
选项A,是轴对称图形,不是中心对称图形,故可以选;
选项B,是轴对称图形,也是中心对称图形,故不可以选;
选项C,不是轴对称图形,是中心对称图形,故不可以选;
选项D,是轴对称图形,也是中心对称图形,故不可以选.
故选A
【点睛】
本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.
5、D
【解析】
利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断.
【详解】
A、,该选项错误;
B、,该选项错误;
C、,该选项错误;
D、,该选项正确;
故选:D.
【点睛】
本题考查了同底数幂的乘法、除法法则,幂的乘方法则以及完全平方公式,正确理解法则是关键.
6、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
【详解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.
【点睛】
本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
7、A
【解析】
先将抛物线解析式化为顶点式,左加右减的原则即可.
【详解】
,
当向左平移2个单位长度,再向上平移3个单位长度,得
.
故选A.
【点睛】
本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
8、C
【解析】
∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
故选C.
考点:抛物线与x轴的交点.
9、D
【解析】
【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.
【详解】A、原式=a9,故A选项错误,不符合题意;
B、原式=27a6,故B选项错误,不符合题意;
C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;
D、原式=6a2,故D选项正确,符合题意,
故选D.
【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.
10、B
【解析】
试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
考点:由三视图判断几何体.
11、A
【解析】
过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
【详解】
过O作OC⊥AB于C,过N作ND⊥OA于D,
∵N在直线y=x+3上,
∴设N的坐标是(x,x+3),
则DN=x+3,OD=-x,
y=x+3,
当x=0时,y=3,
当y=0时,x=-4,
∴A(-4,0),B(0,3),
即OA=4,OB=3,
在△AOB中,由勾股定理得:AB=5,
∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
∴3×4=5OC,
OC=,
∵在Rt△NOM中,OM=ON,∠MON=90°,
∴∠MNO=45°,
∴sin45°=,
∴ON=,
在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
即(x+3)2+(-x)2=()2,
解得:x1=-,x2=,
∵N在第二象限,
∴x只能是-,
x+3=,
即ND=,OD=,
tan∠AON=.
故选A.
【点睛】
本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
12、C
【解析】
直接利用反比例函数的性质结合图象分布得出答案.
【详解】
对于函数y=,y是x2的反比例函数,故选项A错误;
它的图象不经过原点,故选项B错误;
它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
故选C.
【点睛】
此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-1
【解析】
试题分析:∵正方形ADEF的面积为4,
∴正方形ADEF的边长为2,
∴BF=2AF=4,AB=AF+BF=2+4=1.
设B点坐标为(t,1),则E点坐标(t-2,2),
∵点B、E在反比例函数y=的图象上,
∴k=1t=2(t-2),
解得t=-1,k=-1.
考点:反比例函数系数k的几何意义.
14、.
【解析】
直接利用甲车比乙车早半小时到达目的地得出等式即可.
【详解】
解:设乙车的速度是x千米/小时,则根据题意,
可列方程:.
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.
15、1
【解析】
利用平方差公式进行计算即可.
【详解】
原式=()2﹣1
=2﹣1
=1,
故答案为:1.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.
16、﹣1
【解析】
根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题.
【详解】
由题意函数y=1x1+bx的交换函数为y=bx1+1x.
∵y=1x1+bx=,
y=bx1+1x=,
函数y=1x1+bx与它的交换函数图象顶点关于x轴对称,
∴﹣=﹣且,
解得:b=﹣1.
故答案为﹣1.
【点睛】
本题考查了二次函数的性质.理解交换函数的意义是解题的关键.
17、1.1
【解析】
试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.
故答案为1.1.
18、或7
【解析】
分两种情况:
①如图1, 作辅助线, 构建矩形, 先由勾股定理求斜边AB=10, 由中点的定义求出AD和BD的长, 证明四边形HFGB是矩形, 根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得: ∠DA' E=∠A,A' D=AD=5, 由矩形性质和勾股定理可以得出结论: A' B=;
②如图2, 作辅助线, 构建矩形A' MNF,同理可以求出A' B的长.
【详解】
解:分两种情况:
如图1,
过D作DG⊥BC与G, 交A' E与F, 过B作BH⊥A' E与H,
D为AB的中点,BD=AB=AD,
∠C=,AC=8,BC=6,AB=10,
BD=AD=5,
sin ∠ABC=,
DG=4,
由翻折得: ∠DA' E=∠A, A' D=AD=5,
sin∠DA' E=sin ∠A=.
DF=3,
FG=4-3=1,
A'E⊥AC,BC⊥AC,
A'E//BC,∠HFG+∠DGB=,
∠DGB=,∠HFG=,∠EHB=,
四边形HFGB是矩形,
BH=FG=1,
同理得: A' E=AE=8 -1=7,
A'H=A'E-EH=7-6=1,
在Rt△AHB中 , 由勾股定理得: A' B=.
如图2,
过D作MN//AC, 交BC与于N,过A' 作A' F//AC, 交BC的延长线于F,延长A' E交直线DN于M, A'E⊥AC,A' M⊥MN, A' E⊥A'F,
∠M=∠MA'F=,∠ACB=,
∠F=∠ACB=,
四边形MA' FN県矩形,
MN=A'F,FN=A'M,
由翻折得: A' D=AD=5,Rt△A'MD中,DM=3,A'M=4,
FN=A'M=4,
Rt△BDN中,BD=5,DN=4, BN=3,
A' F=MN=DM+DN=3+4=7,
BF=BN+FN=3+4=7,
Rt△ABF中, 由勾股定理得: A' B=;
综上所述,A'B的长为或.
故答案为:或.
【点睛】
本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).
【解析】
(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;
(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;
(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.
【详解】
(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,
则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;
(2)△DCC'是等腰直角三角形,理由如下:
∵抛物线y=x2-2x+c=(x-1)2+c-1,
∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),
∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),
∴CC'=c-(c-2)=2,
∵点D的横坐标为1,
∴∠CDC'=90°,
由对称性质可知DC=DC’,
∴△DCC'是等腰直角三角形;
(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,
令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,
∴C(0,-3),A(3,0),
∵y=x2-2x-3=(x-1)2-4,
∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,
若A、C为平行四边形的对角线,
∴其中点坐标为(,−),
设P(a,-a2+2a-5),
∵A、C、P、Q为顶点的四边形为平行四边形,
∴Q(0,a-3),
∴=−,
化简得,a2+3a+5=0,△<0,方程无实数解,
∴此时满足条件的点P不存在,
若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,
∵点C和点Q在y轴上,
∴点P的横坐标为3,
把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,
∴P1(3,-8),
若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,
∴点P的横坐标为-3,
把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,
∴P2(-3,-20)
∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.
【点睛】
本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.
20、a2+2a,2
【解析】
根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.
【详解】
解:
=
=
=a(a+2)
=a2+2a,
∵a2+2a﹣2=2,
∴a2+2a=2,
∴原式=2.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
21、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
【解析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
【详解】
解:(1)本次调查的学生有30÷20%=150人;
(2)C类别人数为150﹣(30+45+15)=60人,
补全条形图如下:
(3)扇形统计图中C对应的中心角度数是360°×=144°
故答案为144°
(4)600×()=300(人),
答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
22、等腰直角三角形
【解析】
首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.
【详解】
解:∵a2c2-b2c2=a4-b4,
∴a4-b4-a2c2+b2c2=0,
∴(a4-b4)-(a2c2-b2c2)=0,
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2+b2-c2)(a2-b2)=0
得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,
即△ABC为直角三角形或等腰三角形或等腰直角三角形.
考点:勾股定理的逆定理.
23、-1≤x<4,在数轴上表示见解析.
【解析】
试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
试题解析:
,
由①得,x<4;
由②得,x⩾−1.
故不等式组的解集为:−1⩽x<4.
在数轴上表示为:
24、见解析
【解析】
试题分析:证明△ABE≌△ACD 即可.
试题解析:法1:
∵AB=AC,
∴∠B=∠C,
∵AD=CE,
∴∠ADE=∠AED,
∴△ABE≌△ACD,
∴BE=CD ,
∴BD=CE,
法2:如图,作AF⊥BC于F,
∵AB=AC,
∴BF=CF,
∵AD=AE,
∴DF=EF,
∴BF-DF=CF-EF,
即BD=CE.
25、(1)证明见解析;(2)DE=CE,理由见解析;(3).
【解析】
试题分析:(1)证明△ABE∽△ACD,从而得出结论;
(2) 先证明∠CDE=∠ACD,从而得出结论;
(3)解直角三角形示得.
试题解析:
(1)∵∠ABE =∠ACD,∠A=∠A,
∴△ABE∽△ACD,
∴;
(2)∵,
∴,
又∵∠A=∠A,
∴△ADE∽△ACB,
∴∠AED =∠ABC,
∵∠AED =∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,
∴∠ACD+∠CDE=∠ABE+∠CBE,
∵∠ABE =∠ACD,
∴∠CDE=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠CDE=∠ABE=∠ACD,
∴DE=CE;
(3)∵CD⊥AB,
∴∠ADC=∠BDC=90°,
∴∠A+∠ACD=∠CDE+∠ADE=90°,
∵∠ABE =∠ACD,∠CDE=∠ACD,
∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,
∴AE=DE,BE⊥AC,
∵DE=CE,
∴AE=DE=CE,
∴AB=BC,
∵AD=2,BD=3,
∴BC=AB=AD+BD=5,
在Rt△BDC中,,
在Rt△ADC中,,
∴,
∵∠ADC=∠FEC=90°,
∴,
∴.
26、证明见解析.
【解析】
证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
27、(1)政府这个月为他承担的总差价为644元;
(2)当销售单价定为34元时,每月可获得最大利润144元;
(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.
【解析】
试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;
(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;
(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.
试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,
344×(12﹣14)=344×2=644元,
即政府这个月为他承担的总差价为644元;
(2)依题意得,w=(x﹣14)(﹣14x+544)
=﹣14x2+644x﹣5444
=﹣14(x﹣34)2+144
∵a=﹣14<4,∴当x=34时,w有最大值144元.
即当销售单价定为34元时,每月可获得最大利润144元;
(3)由题意得:﹣14x2+644x﹣5444=2,
解得:x1=24,x2=1.
∵a=﹣14<4,抛物线开口向下,
∴结合图象可知:当24≤x≤1时,w≥2.
又∵x≤25,
∴当24≤x≤25时,w≥2.
设政府每个月为他承担的总差价为p元,
∴p=(12﹣14)×(﹣14x+544)
=﹣24x+3.
∵k=﹣24<4.
∴p随x的增大而减小,
∴当x=25时,p有最小值544元.
即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.
考点:二次函数的应用.
温州市达标名校2021-2022学年中考猜题数学试卷含解析: 这是一份温州市达标名校2021-2022学年中考猜题数学试卷含解析,共21页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。
2021-2022学年浙江省慈溪市达标名校中考猜题数学试卷含解析: 这是一份2021-2022学年浙江省慈溪市达标名校中考猜题数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,﹣18的倒数是,的整数部分是等内容,欢迎下载使用。
2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析: 这是一份2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析,共23页。