2021-2022学年山东省威海市环翠区中考联考数学试卷含解析
展开
这是一份2021-2022学年山东省威海市环翠区中考联考数学试卷含解析,共18页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知a为整数,且b>c.
16、x>1.
【解析】
根据不等式的解法解答.
【详解】
解:,
.
故答案为
【点睛】
此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.
17、.
【解析】
探究规律,利用规律即可解决问题.
【详解】
∵∠MON=45°,
∴△C2B2C2为等腰直角三角形,
∴C2B2=B2C2=A2B2.
∵正方形A2B2C2A2的边长为2,
∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,
同理,可得出:OAn=An-2An=An-2An-2=,
∴OA2028=A2028A2027=,
∴A2028M=2-.
故答案为2-.
【点睛】
本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.
18、
【解析】
分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
详解:如图所示:
∵∠C=90°,tanA=,
∴设BC=x,则AC=2x,故AB=x,
则sinB=.
故答案为: .
点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)原分式方程中“?”代表的数是-1.
【解析】
(1)“?”当成5,解分式方程即可,
(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.
【详解】
(1)方程两边同时乘以得
解得
经检验,是原分式方程的解.
(2)设?为,
方程两边同时乘以得
由于是原分式方程的增根,
所以把代入上面的等式得
所以,原分式方程中“?”代表的数是-1.
【点睛】
本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程; ②把增根代入整式方程即可求得相关字母的值.
20、①CD;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③.
【解析】
①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证得,即,从而知.
【详解】
①∵,
∴OA:AB=OC:CD,
∵,,,,
∴线段就是所求的线段x,
故答案为:
②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
③∵、,且,
∴,
∴,即,
∴,
∴.
【点睛】
本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.
21、(1).(2)公平.
【解析】
试题分析:(1)首先根据题意结合概率公式可得答案;
(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.
试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;
(2)列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,
∴P(两张都是轴对称图形)=,因此这个游戏公平.
考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.
22、(1)见解析
(2)当AF=时,四边形BCEF是菱形.
【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.
(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.
【详解】
(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形.
∵∠ABC=90°,AB=4,BC=3,
∴AC=.
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.
∴,即.∴.
∵FG=CG,∴FC=2CG=,
∴AF=AC﹣FC=5﹣.
∴当AF=时,四边形BCEF是菱形.
23、(1)5;(2)1或﹣1.
【解析】
(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;
(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此进一步计算可得.
【详解】
(1)原式=ab+a+b+1﹣ab=a+b+1,
当a+b=4时,原式=4+1=5;
(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),
∴(a﹣b)2+2×4=17,
∴(a﹣b)2=9,
则a﹣b=1或﹣1.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.
24、﹣1
【解析】
根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
【详解】
原式=﹣1+3﹣1×3=﹣1.
【点睛】
本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
25、 (1)8;(2)1.
【解析】
(1)由平行四边形的性质和已知条件易证△AOE≌△COF,所以可得AE=CF=3,进而可求出BC的长;
(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形△AOD的周长.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AO=CO,
∴∠EAO=∠FCO,
在△AOE和△COF中
,
∴△AOE≌△COF,
∴AE=CF=3,
∴BC=BF+CF=5+3=8;
(2)∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,AD=BC=8,
∵AC+BD=20,
∴AO+BO=10,
∴△AOD的周长=AO+BO+AD=1.
【点睛】
本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.
26、(1)这种篮球的标价为每个50元;(2)见解析
【解析】
(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
【详解】
(1)设这种篮球的标价为每个x元,
依题意,得,
解得:x=50,
经检验:x=50是原方程的解,且符合题意,
答:这种篮球的标价为每个50元;
(2)购买100个篮球,最少的费用为3850元,
单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
单独在B超市购买:100×50×0.8=4000元,
在A、B两个超市共买100个,
根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
27、(1) ,顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1 ,②当a<0时,y1>y2 .
【解析】
试题分析:
(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;
(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;
(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a0时,,,
∵此时,且抛物线开口向上,
∴中,点B距离对称轴更远,
∴y10时,y1
相关试卷
这是一份2024年山东省威海市环翠区中考一模数学试题(含解析),共31页。试卷主要包含了下列运算正确的是,如图等内容,欢迎下载使用。
这是一份2022-2023学年山东省威海市环翠区八年级(上)期末数学试卷(五四学制)(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年山东省威海市环翠区八年级(下)期末数学试卷(五四学制)(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。