2021-2022学年内蒙古包头市东河区重点名校中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2
2.下列算式中,结果等于x6的是( )
A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
3.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )
A.2 B. C. D.
4.如图,某计算机中有、、三个按键,以下是这三个按键的功能.
(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.
(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.
(3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.
若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少( )
A.0.01 B.0.1 C.10 D.100
5.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为( )
A.1 B.3 C.﹣1 D.2019
6.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则
A.圆锥形冰淇淋纸套的底面半径为4cm
B.圆锥形冰淇淋纸套的底面半径为6cm
C.圆锥形冰淇淋纸套的高为
D.圆锥形冰淇淋纸套的高为
7.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有( ).
A.3个 B.2个 C.1个 D.0个
8.下列计算正确的是( )
A.a2•a3=a6 B.(a2)3=a6 C.a2+a2=a3 D.a6÷a2=a3
9.下列图案是轴对称图形的是( )
A. B. C. D.
10.实数a在数轴上的位置如图所示,则下列说法不正确的是( )
A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<0
二、填空题(共7小题,每小题3分,满分21分)
11.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.
12.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.
13.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
14.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.
15.化简: =____.
16.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=_______°.
17.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
三、解答题(共7小题,满分69分)
18.(10分)已知关于x的方程x2﹣6mx+9m2﹣9=1.
(1)求证:此方程有两个不相等的实数根;
(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.
19.(5分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=,求⊙O的半径.
20.(8分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.
21.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
22.(10分)(1)|﹣2|+•tan30°+(2018﹣π)0-()-1
(2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.
23.(12分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.
七年级英语口语测试成绩统计表
成绩分
等级
人数
A
12
B
m
C
n
D
9
请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上包括B 级的学生人数.
24.(14分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.
(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;
(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
【详解】
解:依题意,在矩形ABDC中截取矩形ABFE,
则矩形ABDC∽矩形FDCE,
则
设DF=xcm,得到:
解得:x=4.5,
则剩下的矩形面积是:4.5×6=17cm1.
【点睛】
本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.
2、A
【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
B、x2+x2+x2=3x2,故选项B不符合题意;
C、x2•x3=x5,故选项C不符合题意;
D、x4+x2,无法计算,故选项D不符合题意.
故选A.
3、B
【解析】
作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.
【详解】
过P作x轴的垂线,交x轴于点A,
∵P(2,4),
∴OA=2,AP=4,.
∴
∴.
故选B.
【点睛】
本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.
4、B
【解析】
根据题中的按键顺序确定出显示的数即可.
【详解】
解:根据题意得: =40,
=0.4,
0.42=0.04,
=0.4,
=40,
402=400,
400÷6=46…4,
则第400次为0.4.
故选B.
【点睛】
此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.
5、C
【解析】
根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
【详解】
解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
∴x1+x2+…+x7=﹣1
∵x1+x2+x3+x4=1﹣1﹣1+3=2;
x5+x6+x7+x8=3﹣3﹣3+5=2;
…
x97+x98+x99+x100=2…
∴x1+x2+…+x2016=2×(2016÷4)=1.
而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
∴x2017+x2018+x2019=﹣1009,
∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
故选C.
【点睛】
此题主要考查规律型:点的坐标,解题关键在于找到其规律
6、C
【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.
【详解】
解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.
【点睛】
本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
圆锥的母线长等于侧面展开图的扇形半径;
圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.
7、A
【解析】
3+3=6,错误,无法计算;② =1,错误;③+==2不能计算;④=2,正确.
故选A.
8、B
【解析】
试题解析:A.故错误.
B.正确.
C.不是同类项,不能合并,故错误.
D.
故选B.
点睛:同底数幂相乘,底数不变,指数相加.
同底数幂相除,底数不变,指数相减.
9、C
【解析】
解:A.此图形不是轴对称图形,不合题意;
B.此图形不是轴对称图形,不合题意;
C.此图形是轴对称图形,符合题意;
D.此图形不是轴对称图形,不合题意.
故选C.
10、B
【解析】
试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.
故选B.
考点:实数与数轴.
二、填空题(共7小题,每小题3分,满分21分)
11、1.
【解析】
试题解析:设俯视图的正方形的边长为.
∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为
∴
解得
∴这个长方体的体积为4×3=1.
12、或
【解析】
根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+.
【详解】
如图①,当四边形ABCE为平行四边形时,
作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.
∵AB=BC,
∴四边形ABCE是菱形.
∵∠BAD=∠BCD=90°,∠ABC=150°,
∴∠ADC=30°,∠BAN=∠BCE=30°,
∴∠NAD=60°,
∴∠AND=90°.
设BT=x,则CN=x,BC=EC=2x.
∵四边形ABCE面积为2,
∴EC·BT=2,即2x×x=2,解得x=1,
∴AE=EC=2,EN= ,
∴AN=AE+EN=2+ ,
∴CD=AD=2AN=4+2.
如图②,当四边形BEDF是平行四边形,
∵BE=BF,
∴平行四边形BEDF是菱形.
∵∠A=∠C=90°,∠ABC=150°,
∴∠ADB=∠BDC=15°.
∵BE=DE,
∴∠EBD=∠ADB=15°,
∴∠AEB=30°.
设AB=y,则DE=BE=2y,AE=y.
∵四边形BEDF的面积为2,
∴AB·DE=2,即2y2=2,解得y=1,
∴AE=,DE=2,
∴AD=AE+DE=2+.
综上所述,CD的值为4+2或2+.
【点睛】
考核知识点:平行四边形的性质,菱形判定和性质.
13、5
【解析】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
14、
【解析】
如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=,即CD=2CH=2.
【详解】
解:如图,作OH⊥CD于H,连结OC,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,
∵∠OPH=30°,
∴∠POH=60°,
∴OH=OP=1,
在Rt△OHC中,
∵OC=4,OH=1,
∴CH=,
∴CD=2CH=2.
故答案为2.
【点睛】
本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可
15、
【解析】
先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.
【详解】
原式,
故答案为
【点睛】
本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.
16、15
【解析】
根据圆的基本性质得出四边形OABC为菱形,∠AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案.
【详解】
解:∵OABC为平行四边形,OA=OC=OB,
∴四边形OABC为菱形,∠AOB=60°,
∵OD⊥AB,
∴∠BOD=30°,
∴∠BAD=30°÷2=15°.
故答案为:15.
【点睛】
本题主要考查的是圆的基本性质问题,属于基础题型.根据题意得出四边形OABC为菱形是解题的关键.
17、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
【详解】
解:1.111121=2.1×11-2.
故答案为:2.1×11-2.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
三、解答题(共7小题,满分69分)
18、 (1)见解析;(2)m=2
【解析】
(1)根据一元二次方程根的判别式进行分析解答即可;
(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.
【详解】
(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
∴方程有两个不相等的实数根;
(2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
解得:x=2m+2和x=2m-2,
∵2m+2>2m﹣2,x1>x2,
∴x1=2m+2,x2=2m﹣2,
又∵x1=2x2,
∴2m+2=2(2m﹣2)解得:m=2.
【点睛】
(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.
19、 (1)见解析;(2).
【解析】
分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
详解:(1)连结OP、OA,OP交AD于E,如图,
∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
∴直线AB与⊙O相切;
(2)连结BD,交AC于点F,如图,
∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
∴DF=2,∴AD==2,∴AE=.
在Rt△PAE中,tan∠1==,∴PE=.
设⊙O的半径为R,则OE=R﹣,OA=R.
在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
∴R=,即⊙O的半径为.
点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
20、详见解析.
【解析】
先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=DC,
∵E、F分别是AB、BC边的中点,
∴AE=ED=CF=DF.
又∠D=∠D,
∴△ADF≌△CDE(SAS).
∴∠DAF=∠DCE,∠AFD=∠CED.
∴∠AEG=∠CFG.
在△AEG和△CFG中
,
∴△AEG≌△CFG(ASA).
∴AG=CG.
【点睛】
本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.
21、 (1) ;(2).
【解析】
(1)直接利用概率公式求解;
(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
【详解】
(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
(2)画树状图为:
共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
22、(1)-1(1)-1
【解析】
(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;
(1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.
【详解】
(1)原式=1+3×+1﹣5
=1++1﹣5
=﹣1;
(1)原式=
=
=
=﹣,
解不等式组得:-1≤x
则不等式组的整数解为﹣1、0、1、1,
∵x(x+1)≠0且x﹣1≠0,
∴x≠0且x≠±1,
∴x=1,
则原式=﹣=﹣1.
【点睛】
本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.
23、 (1)60人;(2)144°;(3)288人.
【解析】
等级人数除以其所占百分比即可得;
先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;
总人数乘以A、B等级百分比之和即可得.
【详解】
解:本次被抽取参加英语口语测试的学生共有人;
级所占百分比为,
级对应的百分比为,
则扇形统计图中 C 级的圆心角度数为;
人,
答:估计英语口语达到 B级以上包括B 级的学生人数为288人.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体.
24、(1)50,360;(2) .
【解析】
试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;
(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.
试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)
由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)
(2)树状图:
由树状图可知共有12种结果,抽到1男1女分别为共8种.
∴
考点:1、扇形统计图,2、条形统计图,3、概率
2024年内蒙古包头市东河区中考二模数学试题: 这是一份2024年内蒙古包头市东河区中考二模数学试题,共3页。
内蒙古包头市东河区重点名校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份内蒙古包头市东河区重点名校2021-2022学年中考数学对点突破模拟试卷含解析,共27页。试卷主要包含了如果一次函数y=kx+b,下列计算错误的是等内容,欢迎下载使用。
2022届内蒙古包头市东河区中考一模数学试题含解析: 这是一份2022届内蒙古包头市东河区中考一模数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。