|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年山东省青岛市黄岛区重点达标名校中考联考数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年山东省青岛市黄岛区重点达标名校中考联考数学试题含解析01
    2021-2022学年山东省青岛市黄岛区重点达标名校中考联考数学试题含解析02
    2021-2022学年山东省青岛市黄岛区重点达标名校中考联考数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省青岛市黄岛区重点达标名校中考联考数学试题含解析

    展开
    这是一份2021-2022学年山东省青岛市黄岛区重点达标名校中考联考数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,如图,已知,,则的度数为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
    ①S△ODB=S△OCA;
    ②四边形OAMB的面积不变;
    ③当点A是MC的中点时,则点B是MD的中点.
    其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    2.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是(  )

    A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米
    C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米
    3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是(  )

    A.①②④ B.①③ C.①②③ D.①③④
    4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )
    A.平均数是15 B.众数是10 C.中位数是17 D.方差是
    5.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
    A. B.
    C. D.
    6.如图,已知点 P 是双曲线 y=上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ,则经过点 Q 的双曲线的表达式为( )

    A.y= B.y=﹣ C.y= D.y=﹣
    7.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为(  )

    A.1 B.3 C.5 D.1或5
    8.如图,已知,,则的度数为( )

    A. B. C. D.
    9.如图图形中,既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    10.如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是  

    A.5:2 B.3:2 C.3:1 D.2:1
    11.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是(  )
    A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
    12.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为(  )
    A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣5
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.小青在八年级上学期的数学成绩如下表所示.

    平时测验
    期中考试
    期末考试
    成绩
    86
    90
    81
    如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.

    14.若式子有意义,则x的取值范围是______.
    15.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.

    16.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为()的圆内切于△ABC,则k的值为________.

    17.如图,已知AB∥CD,若,则=_____.

    18.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
    收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
    排球
    10
    9.5
    9.5
    10
    8
    9
    9.5
    9

    7
    10
    4
    5.5
    10
    9.5
    9.5
    10
    篮球
    9.5
    9
    8.5
    8.5
    10
    9.5
    10
    8

    6
    9.5
    10
    9.5
    9
    8.5
    9.5
    6
    整理、描述数据:按如下分数段整理、描述这两组样本数据:
    (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
    分析数据:两组样本数据的平均数、中位数、众数如下表所示:
    项目
    平均数
    中位数
    众数
    排球
    8.75
    9.5
    10
    篮球
    8.81
    9.25
    9.5
    得出结论:
    (1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
    (2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
    你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
    20.(6分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
    请根据图中提供的信息,回答下列问题:a=   %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?

    21.(6分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
    (1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
    (2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
    22.(8分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米).

    23.(8分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.
    请你根据图中所提供的信息,完成下列问题:
    本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?
    24.(10分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.

    (1)求甲组加工零件的数量y与时间之间的函数关系式.
    (2)求乙组加工零件总量的值.
    (3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
    25.(10分)计算:(-1)-1-++|1-3|
    26.(12分)平面直角坐标系xOy(如图),抛物线y=﹣x2+2mx+3m2(m>0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC.
    (1)当点C(0,3)时,
    ①求这条抛物线的表达式和顶点坐标;
    ②求证:∠DCE=∠BCE;
    (2)当CB平分∠DCO时,求m的值.

    27.(12分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
    (1)求证:△ADC∽△ACB;
    (2)CE与AD有怎样的位置关系?试说明理由;
    (3)若AD=4,AB=6,求的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
    【详解】
    ①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
    ②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
    ③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
    故答案选D.

    考点:反比例系数的几何意义.
    2、C
    【解析】
    解:A.小丽从家到达公园共用时间20分钟,正确;
    B.公园离小丽家的距离为2000米,正确;
    C.小丽在便利店时间为15﹣10=5分钟,错误;
    D.便利店离小丽家的距离为1000米,正确.
    故选C.
    3、B
    【解析】
    ∵函数图象的对称轴为:x=-==1,∴b=﹣2a,即2a+b=0,①正确;
    由图象可知,当﹣1<x<3时,y<0,②错误;
    由图象可知,当x=1时,y=0,∴a﹣b+c=0,
    ∵b=﹣2a,∴3a+c=0,③正确;
    ∵抛物线的对称轴为x=1,开口方向向上,
    ∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;
    故④错误;
    故选B.
    点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.
    4、C
    【解析】
    解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.
    故选C.
    【点睛】
    本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.
    5、B
    【解析】
    抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
    【详解】
    解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
    可设新抛物线的解析式为:y=(x-h)1+k,
    代入得:y=(x+1)1-1.
    ∴所得图象的解析式为:y=(x+1)1-1;
    故选:B.
    【点睛】
    本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
    6、D
    【解析】
    过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.
    【详解】
    过P,Q分别作PM⊥x轴,QN⊥x轴,

    ∵∠POQ=90°,
    ∴∠QON+∠POM=90°,
    ∵∠QON+∠OQN=90°,
    ∴∠POM=∠OQN,
    由旋转可得OP=OQ,
    在△QON和△OPM中,

    ∴△QON≌△OPM(AAS),
    ∴ON=PM,QN=OM,
    设P(a,b),则有Q(-b,a),
    由点P在y=上,得到ab=3,可得-ab=-3,
    则点Q在y=-上.
    故选D.
    【点睛】
    此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.
    7、D
    【解析】
    分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
    【详解】
    当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
    当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
    故选D.
    【点睛】
    本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
    8、B
    【解析】
    分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.
    详解:∵∠AOC=70°, ∠BOC=30°, ∴∠AOB=70°-30°=40°,
    ∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.
    点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.
    9、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故A不正确;
    B、既是轴对称图形,又是中心对称图形,故B正确;
    C、是轴对称图形,不是中心对称图形,故C不正确;
    D、既不是轴对称图形,也不是中心对称图形,故D不正确.
    故选B.
    【点睛】
    本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.
    10、C
    【解析】
    求出正六边形和阴影部分的面积即可解决问题;
    【详解】
    解:正六边形的面积,
    阴影部分的面积,
    空白部分与阴影部分面积之比是::1,
    故选C.
    【点睛】
    本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    11、C
    【解析】
    ∵∠C=90°,
    ∴cosA=,sinA= ,tanA=,cotA=,
    ∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
    ∴只有选项C正确,
    故选C.
    【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
    12、B
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.000 0025=2.5×10﹣6;
    故选B.
    【点睛】
    本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、84.2
    【解析】
    小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.
    14、x>.
    【解析】
    解:依题意得:2x+3>1.解得x>.故答案为x>.
    15、
    【解析】
    如图,连接EF,

    ∵点E、点F是AD、DC的中点,
    ∴AE=ED,CF=DF=CD=AB=1,
    由折叠的性质可得AE=A′E,
    ∴A′E=DE,
    在Rt△EA′F和Rt△EDF中,

    ∴Rt△EA′F≌Rt△EDF(HL),
    ∴A′F=DF=1,
    ∴BF=BA′+A′F=AB+DF=2+1=3,
    在Rt△BCF中,
    BC=.
    ∴AD=BC=2 .
    点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,再利用勾股定理解答即可.
    16、1
    【解析】
    试题解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;
    设圆心为Q,切点为H、E,连接QH、QE.

    ∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,
    ∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,
    QH⊥AC,QE⊥BC,∠ACB=90°,
    ∴四边形HQEC是正方形,
    ∵半径为(1-2)的圆内切于△ABC,
    ∴DO=CD,
    ∵HQ2+HC2=QC2,
    ∴2HQ2=QC2=2×(1-2)2,
    ∴QC2=18-32=(1-1)2,
    ∴QC=1-1,
    ∴CD=1-1+(1-2)=2,
    ∴DO=2,
    ∵NO2+DN2=DO2=(2)2=8,
    ∴2NO2=8,
    ∴NO2=1,
    ∴DN×NO=1,
    即:xy=k=1.
    【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.
    17、
    【解析】
    【分析】利用相似三角形的性质即可解决问题;
    【详解】∵AB∥CD,
    ∴△AOB∽△COD,
    ∴,
    故答案为.
    【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.
    18、
    【解析】
    根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值.
    【详解】
    解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=.
    【点睛】
    本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
    【解析】
    根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
    根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
    【详解】
    解:补全表格成绩:
    人数
    项目




    10
    排球
    1
    1
    2
    7
    5
    篮球
    0
    2
    1
    10
    3
    达到优秀的人数约为(人);
    故答案为130;
    同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
    故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
    【点睛】
    本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
    20、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
    【解析】
    (1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
    (2)根据众数和中位数的定义即可求出答案;
    (3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
    【详解】
    解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
    该扇形所对圆心角的度数为310°×10%=31°,
    参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:

    故答案为10;
    (2)抽样调查中总人数为100人,
    结合条形统计图可得:众数是5,中位数是1.
    (3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
    活动时间不少于1天的学生人数大约有5400人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、(1)甲80件,乙20件;(2)x≤90
    【解析】
    (1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
    (2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
    【详解】
    解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
    根据题意得30x+20(100﹣x)=2800,
    解得x=80,
    则100﹣x=20,
    答:甲种奖品购买了80件,乙种奖品购买了20件;
    (2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
    根据题意得:30x+20(100﹣x)≤2900,
    解得:x≤90,
    【点睛】
    本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
    22、AB≈3.93m.
    【解析】
    想求得AB长,由等腰三角形的三线合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函数可以求出.
    【详解】
    ∵AC=BC,D是AB的中点,
    ∴CD⊥AB,
    又∵CD=1米,∠A=27°,
    ∴AD=CD÷tan27°≈1.96,
    ∴AB=2AD,
    ∴AB≈3.93m.
    【点睛】
    本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB.
    23、(1)120;(2)  ;(3)答案见解析;(4)1650.
    【解析】
    (1)依据节目B的数据,即可得到调查的学生人数;
    (2)依据A部分的百分比,即可得到A部分所占圆心角的度数;
    (3)求得C部分的人数,即可将条形统计图补充完整;
    (4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.
    【详解】

    故答案为120;

    故答案为;
    :,
    如图所示:


    答:该校最喜爱中国诗词大会的学生有1650名.
    【点睛】
    本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.
    24、 (1)见解析(2)300(3)2小时
    【解析】
    解:(1)设甲组加工的零件数量y与时间x的函数关系式为.
    根据题意,得,解得.
    所以,甲组加工的零件数量y与时间x的函数关系式为:.
    (2)当时,.
    因为更换设备后,乙组工作效率是原来的2倍,
    所以,.解得.
    (3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为

    当0≤x≤2时,.解得.舍去.
    当2 当2.8 所以,经过3小时恰好装满第1箱.
    当3 当4.8 因为5-3=2,
    所以,再经过2小时恰好装满第2箱.
    25、-1
    【解析】
    试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.
    试题解析:原式=-1-=-1.
    26、(1)y=﹣x2+2x+3;D(1,4);(2)证明见解析;(3)m=;
    【解析】
    (1)①把C点坐标代入y=﹣x2+2mx+3m2可求出m的值,从而得到抛物线解析式,
    然后把一般式配成顶点式得到D点坐标;
    ②如图1,先解方程﹣x2+2x+3=0得B(3,0),则可判断△OCB为等腰直角三角形得到∠
    OBC=45°,再证明△CDE为等腰直角三角形得到∠DCE=45°,从而得到∠DCE=∠BCE;
    (2)抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,把一般式配成顶点式得
    到抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),通过解方程﹣x2+2mx+3m2=0
    得B(3m,0),同时确定C(0,3m2),再利用相似比表示出GF=2m2,则DG=2m2,接着证
    明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.
    【详解】
    (1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),
    ∴抛物线解析式为y=﹣x2+2x+3;

    ∴顶点D为(1,4);
    ②证明:如图1,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),
    ∵OC=OB,
    ∴△OCB为等腰直角三角形,
    ∴∠OBC=45°,
    ∵CE⊥直线x=1,
    ∴∠BCE=45°,
    ∵DE=1,CE=1,
    ∴△CDE为等腰直角三角形,
    ∴∠DCE=45°,
    ∴∠DCE=∠BCE;
    (2)解:抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,

    ∴抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),
    当y=0时,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,则B(3m,0),
    当x=0时,y=﹣x2+2mx+3m2=3m2,则C(0,3m2),
    ∵GF∥OC,
    ∴即 解得GF=2m2,
    ∴DG=4m2﹣2m2=2m2,
    ∵CB平分∠DCO,
    ∴∠DCB=∠OCB,
    ∵∠OCB=∠DGC,
    ∴∠DCG=∠DGC,
    ∴DC=DG,
    即m2+(4m2﹣3m2)2=4m4,

    而m>0,



    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵活应用等腰直角三角形的性质进行几何计算;理解坐标与图形性质,记住两点间的距离公式.
    27、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
    【解析】
    (1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
    (2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
    (3)根据相似三角形的性质列出比例式,计算即可.
    【详解】
    解:(1)∵AC平分∠DAB,
    ∴∠DAC=∠CAB,
    又∵AC2=AB•AD,
    ∴AD:AC=AC:AB,
    ∴△ADC∽△ACB;
    (2)CE∥AD,
    理由:∵△ADC∽△ACB,
    ∴∠ACB=∠ADC=90°,
    又∵E为AB的中点,
    ∴∠EAC=∠ECA,
    ∵∠DAC=∠CAE,
    ∴∠DAC=∠ECA,
    ∴CE∥AD;
    (3)∵AD=4,AB=6,CE=AB=AE=3,
    ∵CE∥AD,
    ∴∠FCE=∠DAC,∠CEF=∠ADF,
    ∴△CEF∽△ADF,
    ∴==,
    ∴=.

    相关试卷

    山东省青岛市市南区重点达标名校2021-2022学年中考适应性考试数学试题含解析: 这是一份山东省青岛市市南区重点达标名校2021-2022学年中考适应性考试数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,图中三视图对应的正三棱柱是等内容,欢迎下载使用。

    山东省青岛市黄岛区重点达标名校2021-2022学年中考二模数学试题含解析: 这是一份山东省青岛市黄岛区重点达标名校2021-2022学年中考二模数学试题含解析,共23页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    2022年山东省青岛市黄岛区重点达标名校中考数学模试卷含解析: 这是一份2022年山东省青岛市黄岛区重点达标名校中考数学模试卷含解析,共21页。试卷主要包含了若 || =-,则一定是,的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map