终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年山东省高密市银鹰文昌中学中考四模数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年山东省高密市银鹰文昌中学中考四模数学试题含解析第1页
    2021-2022学年山东省高密市银鹰文昌中学中考四模数学试题含解析第2页
    2021-2022学年山东省高密市银鹰文昌中学中考四模数学试题含解析第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省高密市银鹰文昌中学中考四模数学试题含解析

    展开

    这是一份2021-2022学年山东省高密市银鹰文昌中学中考四模数学试题含解析,共16页。试卷主要包含了下列运算正确的,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列性质中菱形不一定具有的性质是( )
    A.对角线互相平分 B.对角线互相垂直
    C.对角线相等 D.既是轴对称图形又是中心对称图形
    2.在△ABC中,若=0,则∠C的度数是( )
    A.45° B.60° C.75° D.105°
    3.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的(  )
    A.平均数 B.中位数 C.众数 D.方差
    4.下列计算正确的是(  )
    A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p
    5.下列运算正确的(  )
    A.(b2)3=b5 B.x3÷x3=x C.5y3•3y2=15y5 D.a+a2=a3
    6.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )

    A. B. C. D.
    7.如图是正方体的表面展开图,则与“前”字相对的字是(  )

    A.认 B.真 C.复 D.习
    8.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为(  )

    A.6 B.8 C.10 D.12
    9.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是(  )

    A.0 B.1 C.2 D.3
    10.下列计算正确的是(  )
    A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1
    C.2x2÷3x2=x2 D.2x2•3x2=6x4
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=_____.

    12.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.
    13.已知线段a=4,线段b=9,则a,b的比例中项是_____.
    14.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.

    15.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.

    16.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______________.

    17.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.

    19.(5分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E.
    (1)求证:EF是⊙O的切线;
    (2)连接BC,若AB=5,BC=3,求线段AE的长.

    20.(8分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根
    21.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
    (1)求每千克A级别茶叶和B级别茶叶的销售利润;
    (2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
    22.(10分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.

    23.(12分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.
    (1)2014年这种礼盒的进价是多少元/盒?
    (2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
    24.(14分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
    求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据菱形的性质:①菱形具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
    【详解】
    解:A、菱形的对角线互相平分,此选项正确;
    B、菱形的对角线互相垂直,此选项正确;
    C、菱形的对角线不一定相等,此选项错误;
    D、菱形既是轴对称图形又是中心对称图形,此选项正确;
    故选C.
    考点:菱形的性质
    2、C
    【解析】
    根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
    【详解】
    由题意,得 cosA=,tanB=1,
    ∴∠A=60°,∠B=45°,
    ∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
    故选C.
    3、B
    【解析】
    由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的
    中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8
    名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的
    分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
    故选B.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反
    映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统
    计量进行合理的选择和恰当的运用.
    4、D
    【解析】
    直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.
    【详解】
    解:A.﹣5x﹣2x=﹣7x,故此选项错误;
    B.(a+3)2=a2+6a+9,故此选项错误;
    C.(﹣a3)2=a6,故此选项错误;
    D.a2p÷a﹣p=a3p,正确.
    故选D.
    【点睛】
    本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键.
    5、C
    【解析】
    分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.
    详解:A、(b2)3=b6,故此选项错误;
    B、x3÷x3=1,故此选项错误;
    C、5y3•3y2=15y5,正确;
    D、a+a2,无法计算,故此选项错误.
    故选C.
    点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.
    6、A
    【解析】
    由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.
    故选A.
    点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.
    7、B
    【解析】
    分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
    详解:由图形可知,与“前”字相对的字是“真”.
    故选B.
    点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
    8、B
    【解析】
    根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
    【详解】
    ∵点A的坐标为(﹣3,﹣4),
    ∴OA==5,
    ∵四边形AOCB是菱形,
    ∴AB=OA=5,AB∥x轴,
    ∴B(﹣8,﹣4),
    ∵点E是菱形AOCB的中心,
    ∴E(﹣4,﹣2),
    ∴k=﹣4×(﹣2)=8,
    故选B.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.
    9、D
    【解析】
    根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.
    【详解】
    ∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,
    ∴∠A=∠EBA,∠CBE=∠EBA,
    ∴∠A=∠CBE=∠EBA,
    ∵∠C=90°,
    ∴∠A+∠CBE+∠EBA=90°,
    ∴∠A=∠CBE=∠EBA=30°,故①选项正确;
    ∵∠A=∠EBA,∠EDB=90°,
    ∴AD=BD,故②选项正确;
    ∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,
    ∴EC=ED(角平分线上的点到角的两边距离相等),
    ∴点E到AB的距离等于CE的长,故③选项正确,
    故正确的有3个.
    故选D.
    【点睛】
    此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.
    10、D
    【解析】
    先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.
    【详解】
    A、2x2+3x2=5x2,不符合题意;
    B、2x2﹣3x2=﹣x2,不符合题意;
    C、2x2÷3x2=,不符合题意;
    D、2x23x2=6x4,符合题意,
    故选:D.
    【点睛】
    本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,
    ∵tan∠BAO=2,
    ∴=2,
    ∵S△ABO=•AO•BO=4,
    ∴AO=2,BO=4,
    ∵△ABO≌△A'O'B,
    ∴AO=A′O′=2,BO=BO′=4,
    ∵点C为斜边A′B的中点,CD⊥BO′,
    ∴CD=A′O′=1,BD=BO′=2,
    ∴x=BO﹣CD=4﹣1=3,y=BD=2,
    ∴k=x·y=3×2=1.
    故答案为1.

    12、
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
    【详解】
    画树状图得:

    ∵共有12种等可能的结果,两次都摸到白球的有2种情况,
    ∴两次都摸到白球的概率是:=.
    故答案为:.
    【点睛】
    本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.
    13、6
    【解析】
    根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.
    【详解】
    解:∵a=4,b=9,设线段x是a,b的比例中项,
    ∴ ,
    ∴x2=ab=4×9=36,
    ∴x=6,x=﹣6(舍去).
    故答案为6
    【点睛】
    本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.
    14、1:3
    【解析】
    根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.
    故答案为1:3.
    15、1
    【解析】
    解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.
    16、3
    【解析】
    根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.
    【详解】
    解:因为点M、N分别是AB、BC的中点,
    由三角形的中位线可知:MN=AC,
    所以当AC最大为直径时,MN最大.这时∠B=90°
    又因为∠ACB=45°,AB=6 解得AC=6
    MN长的最大值是3.
    故答案为:3.

    【点睛】
    本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.
    17、288°
    【解析】
    母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.
    【详解】

    解:如图所示,在Rt△SOA中,SO=9,SA=15;
    则:
    设侧面属开图扇形的国心角度数为n,则由 得n=288°
    故答案为:288°.
    【点睛】
    本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.

    三、解答题(共7小题,满分69分)
    18、证明见解析
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AD//BC,AD=BC,
    ∵AE=CF
    ∴AD-AE=BC-CF
    即DE=BF
    ∴四边形BFDE是平行四边形.
    19、(1)证明见解析
    (2)
    【解析】
    (1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,根据切线的判定定理证明;
    (2)根据勾股定理求出AC,证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算即可.
    【详解】
    (1)证明:连接OC,

    ∵OA=OC,
    ∴∠OCA=∠BAC,
    ∵点C是的中点,
    ∴∠EAC=∠BAC,
    ∴∠EAC=∠OCA,
    ∴OC∥AE,
    ∵AE⊥EF,
    ∴OC⊥EF,即EF是⊙O的切线;
    (2)解:∵AB为⊙O的直径,
    ∴∠BCA=90°,
    ∴AC==4,
    ∵∠EAC=∠BAC,∠AEC=∠ACB=90°,
    ∴△AEC∽△ACB,
    ∴,
    ∴AE=.
    【点睛】
    本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.
    20、2m2+2m+5;1;
    【解析】
    先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.
    【详解】
    解:原式=2(m2﹣2m+1)+1m+3,
    =2m2﹣4m+2+1m+3=2m2+2m+5,
    ∵m是方程2x2+2x﹣1=0的根,
    ∴2m2+2m﹣1=0,即2m2+2m=1,
    ∴原式=2m2+2m+5=1.
    【点睛】
    此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.
    21、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
    【解析】
    试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
    (2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
    试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
    由题意,
    解得,
    答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
    (2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
    由题意w=100a+150(200﹣a)=﹣50a+30000,
    ∵﹣50<0,
    ∴w随x的增大而减小,
    ∴当a取最小值,w有最大值,
    ∵200﹣a≤2a,
    ∴a≥,
    ∴当a=67时,w最小=﹣50×67+30000=26650(元),
    此时200﹣67=133kg,
    答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
    点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
    22、11米
    【解析】
    过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.
    【详解】
    解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,

    则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,
    ∵△ABC≌△A′B′C′,
    ∴∠MAE=∠B′MF,
    ∵∠AEM=∠B′FM=90°,
    ∴△AMF∽△MB′F,
    ∴ ,

    ∴MF= ,


    答:旗杆MN的高度约为11米.
    【点睛】
    本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.
    23、(1)35元/盒;(2)20%.
    【解析】
    试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.
    试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.
    答:2014年这种礼盒的进价是35元/盒.
    (2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).
    根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).
    答:年增长率为20%.
    考点:一元二次方程的应用;分式方程的应用;增长率问题.
    24、(1)见解析;(2)4.1
    【解析】
    试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;
    (2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.
    试题解析:(1)∵四边形ABCD是正方形,
    ∴AB=AD,∠B=10°,AD∥BC,
    ∴∠AMB=∠EAF,
    又∵EF⊥AM,
    ∴∠AFE=10°,
    ∴∠B=∠AFE,
    ∴△ABM∽△EFA;
    (2)∵∠B=10°,AB=12,BM=5,
    ∴AM==13,AD=12,
    ∵F是AM的中点,
    ∴AF=AM=6.5,
    ∵△ABM∽△EFA,
    ∴,
    即,
    ∴AE=16.1,
    ∴DE=AE-AD=4.1.
    考点:1.相似三角形的判定与性质;2.正方形的性质.

    相关试卷

    2023-2024学年山东省高密市银鹰文昌中学九上数学期末预测试题含答案:

    这是一份2023-2024学年山东省高密市银鹰文昌中学九上数学期末预测试题含答案,共7页。试卷主要包含了下列判断正确的是,下列说法正确的是,下列事件中,必然发生的是,不等式组的整数解有等内容,欢迎下载使用。

    山东省高密市银鹰文昌中学2023-2024学年数学八上期末学业质量监测试题含答案:

    这是一份山东省高密市银鹰文昌中学2023-2024学年数学八上期末学业质量监测试题含答案,共8页。试卷主要包含了下列各分式中,是最简分式的是.等内容,欢迎下载使用。

    山东省高密市银鹰文昌中学2022-2023学年数学七年级第二学期期末考试试题含答案:

    这是一份山东省高密市银鹰文昌中学2022-2023学年数学七年级第二学期期末考试试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map