2021-2022学年山东省临沂市罗庄区、河东区、高新区三区市级名校中考四模数学试题含解析
展开
这是一份2021-2022学年山东省临沂市罗庄区、河东区、高新区三区市级名校中考四模数学试题含解析,共22页。试卷主要包含了计算4+,下列计算,正确的是,以下各图中,能确定的是,在中,,,,则的值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )
A. B. C. D.
2.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第( )象限.
A.一 B.二 C.三 D.四
3.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )
A. B. C. D.
4.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米
A. B. C.+1 D.3
5.对于一组统计数据1,1,6,5,1.下列说法错误的是( )
A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
6.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是( )
A.2 B. C. D.
7.计算4+(﹣2)2×5=( )
A.﹣16 B.16 C.20 D.24
8.下列计算,正确的是( )
A. B.
C.3 D.
9.以下各图中,能确定的是( )
A. B. C. D.
10.在中,,,,则的值是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)
12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.
13.用一条长 60 cm 的绳子围成一个面积为 216的矩形.设矩形的一边长为 x cm,则可列方程为______.
14.如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为_____.
15.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
16.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=_____.
三、解答题(共8题,共72分)
17.(8分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
18.(8分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.
(1)小明选择去郊游的概率为多少;
(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.
19.(8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)
20.(8分)一次函数的图象经过点和点,求一次函数的解析式.
21.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别
成绩x分
频数(人数)
第1组
50≤x<60
6
第2组
60≤x<70
8
第3组
70≤x<80
14
第4组
80≤x<90
a
第5组
90≤x<100
10
22.(10分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的长;设,,求向量(用向量、表示).
23.(12分)已知△ABC内接于⊙O,AD平分∠BAC.
(1)如图1,求证:;
(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;
(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.
24.如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C.
(1)求点 A 的坐标;
(2)结合函数的图象,求当 yAF,当点A、C、F三点共线时可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.
【详解】
如图,过O作OF⊥AO且使OF=AO,连接AF、CF,
∴∠AOF=90°,△AOF是等腰直角三角形,
∴AF=AO,
∵四边形BCDE是正方形,
∴OB=OC,∠BOC=90°,
∵∠BOC=∠AOF=90°,
∴∠AOB+∠AOC=∠COF+∠AOC,
∴∠AOB=∠COF,
又∵OB=OC,AO=OF,
∴△AOB≌△COF,
∴CF=AB=4,
当点A、C、F三点不共线时,AC+CF>AF,
当点A、C、F三点共线时,AC+CF=AC+AB=AF=7,
∴AF≤AC+CF=7,
∴AF的最大值是7,
∴AF=AO=7,
∴AO=.
故答案为
【点睛】
本题考查正方形的性质,全等三角形的判定与性质,熟练掌握相关定理及性质是解题关键.
15、-1
【解析】
根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.
【详解】
解:∵方程3x1-5x+1=0的一个根是a,
∴3a1-5a+1=0,
∴3a1-5a=-1,
∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.
故答案是:-1.
【点睛】
此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
16、1
【解析】
根据白球的概率公式=列出方程求解即可.
【详解】
不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,
根据古典型概率公式知:P(白球)==.
解得:n=1,
故答案为1.
【点睛】
此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
三、解答题(共8题,共72分)
17、(1)12米;(2)(2+8)米
【解析】
(1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;
(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.
【详解】
(1)如图,设DE=x,
∵AB=DF=4,∠ACB=30°,
∴AC=8,
∵∠ECD=60°,
∴△ACE是直角三角形,
∵AF∥BD,
∴∠CAF=30°,
∴∠CAE=60°,∠AEC=30°,
∴AE=16,
∴Rt△AEF中,EF=8,
即x﹣4=8,
解得x=12,
∴树DE的高度为12米;
(2)延长NM交DB延长线于点P,则AM=BP=6,
由(1)知CD=CE=×AC=4,BC=4,
∴PD=BP+BC+CD=6+4+4=6+8,
∵∠NDP=45°,且∠NPD=90°,
∴NP=PD=6+8,
∴NM=NP﹣MP=6+8﹣4=2+8,
∴食堂MN的高度为(2+8)米.
【点睛】
此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.
18、(1);(2).
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案
【详解】
(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,
∴小明选择去郊游的概率=;
(2)列表得:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,
所以小明和小亮的选择结果相同的概率==.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
19、
【解析】
过点A作,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.
【详解】
过点A作,垂足为G.则,在中,
,
由题意,得,
∴,
连接FD并延长与BA的延长线交于点H. 由题意,得.在中,
,
∴.
在中,.
答:支角钢CD的长为45cm,EF的长为.
考点:三角函数的应用
20、y=2x+1.
【解析】
直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
【详解】
∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
故一次函数的解析式为y=2x+1.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
21、(1)①12,3. ②详见解析.(2).
【解析】
分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;
(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;
(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
详解:(1)①a=50﹣(6+8+14+10)=12,
中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,
所以中位数落在第3组,
故答案为12,3;
②如图,
(2)×100%=44%,
答:本次测试的优秀率是44%;
(3)设小明和小强分别为A、B,另外两名学生为:C、D,
则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
所以小明和小强分在一起的概率为:.
点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.
22、(1)1;(2).
【解析】
(1)由平行线截线段成比例求得AE的长度;
(2)利用平面向量的三角形法则解答.
【详解】
(1)如图,
∵DE∥BC,且DE=BC,
∴.
又AC=6,
∴AE=1.
(2)∵,,
∴.
又DE∥BC,DE=BC,
∴
【点睛】
考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.
23、(1)证明见解析;(1)证明见解析;(3)1.
【解析】
(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.
(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;
(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.
【详解】
(1)如图1,连接OB、OC、OD,
∵∠BAD和∠BOD是所对的圆周角和圆心角,
∠CAD和∠COD是所对的圆周角和圆心角,
∴∠BOD=1∠BAD,∠COD=1∠CAD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴=;
(1)如图1,过点O作OM⊥AD于点M,
∴∠OMA=90°,AM=DM,
∵BE⊥AD于点E,CF⊥AD于点F,
∴∠CFM=90°,∠MEB=90°,
∴∠OMA=∠MEB,∠CFM=∠OMA,
∴OM∥BE,OM∥CF,
∴BE∥OM∥CF,
∴,
∵OB=OC,
∴=1,
∴FM=EM,
∴AM﹣FM=DM﹣EM,
∴DE=AF;
(3)延长EO交AB于点H,连接CG,连接OA.
∵BC为⊙O直径,
∴∠BAC=90°,∠G=90°,
∴∠G=∠CFE=∠FEG=90°,
∴四边形CFEG是矩形,
∴EG=CF,
∵AD平分∠BAC,
∴∠BAF=∠CAF=×90°=45°,
∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,
∠ACF=180°﹣∠CAF﹣∠AFC=45°,
∴∠BAF=∠ABE,∠ACF=∠CAF,
∴AE=BE,AF=CF,
在Rt△ACF中,∠AFC=90°,
∴sin∠CAF=,即sin45°=,
∴CF=1×=,
∴EG=,
∴EF=1EG=1,
∴AE=3,
在Rt△AEB中,∠AEB=90°,
∴AB==6,
∵AE=BE,OA=OB,
∴EH垂直平分AB,
∴BH=EH=3,
∵∠OHB=∠BAC,∠ABC=∠ABC
∴△HBO∽△ABC,
∴,
∴OH=1,
∴OE=EH﹣OH=3﹣1=1.
【点睛】
本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.
24、(1);(2)
【解析】
(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;
(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出.
【详解】
解:(1)当时,函数的值为-2,
∴点的坐标为
∵四边形为矩形,
解方程,得.
∴点的坐标为.
∴点的坐标为.
(2)解方程,得.
由图象可知,当时,的取值范围是.
【点睛】
本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.
相关试卷
这是一份山东省临沂市罗庄区、河东区、高新区三区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份山东省临沂市罗庄区、河东区、高新区三区2023-2024学年八上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,把多项式分解因式,结果正确的是,若分式的值是0,则的值是,下列说法正确的是等内容,欢迎下载使用。
这是一份山东省临沂市罗庄区市级名校2022年中考数学五模试卷含解析,共23页。试卷主要包含了下列4个数,化简的结果是,计算的正确结果是,在中,,,下列结论中,正确的是,如图,右侧立体图形的俯视图是,如图,过点A,下列说法中,正确的个数共有等内容,欢迎下载使用。