2021-2022学年四川省巴中学市恩阳区中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )
A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2
2.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
①S△ODB=S△OCA;
②四边形OAMB的面积不变;
③当点A是MC的中点时,则点B是MD的中点.
其中正确结论的个数是( )
A.0 B.1 C.2 D.3
3.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是( )
A.3 B.3.5 C.4 D.5
4.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了( )
A.25本 B.20本 C.15本 D.10本
5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
6.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )
A.70° B.50° C.40° D.35°
7.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是( )
A. B.
C. D.
8.已知是二元一次方程组的解,则m+3n的值是( )
A.4 B.6 C.7 D.8
9.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
A. B. C. D.
10.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
①若C,O两点关于AB对称,则OA=;
②C,O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为π.
其中正确的是( )
A.①② B.①②③ C.①③④ D.①②④
二、填空题(共7小题,每小题3分,满分21分)
11.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.
12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.
13.一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_________
14.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
15.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.
16.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m的值为___________.
17.观察下列等式:
第1个等式:a1=;
第2个等式:a2=;
第3个等式:a3=;
…
请按以上规律解答下列问题:
(1)列出第5个等式:a5=_____;
(2)求a1+a2+a3+…+an=,那么n的值为_____.
三、解答题(共7小题,满分69分)
18.(10分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.
19.(5分)先化简,再求值:,其中.
20.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.
21.(10分)(1)观察猜想
如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;
(2)问题解决
如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;
(3)拓展延伸
如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.
22.(10分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;
C
D
总计/t
A
200
B
x
300
总计/t
240
260
500
(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求
总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.
23.(12分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?
(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?
24.(14分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度数;
(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.
【详解】
解:设直线AB的解析式为y=mx+n.
∵A(−2,0),B(0,1),
∴ ,
解得 ,
∴直线AB的解析式为y=2x+1.
将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,
再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,
所以直线l的表达式是y=2x−2.
故选:B.
【点睛】
本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.
2、D
【解析】
根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
【详解】
①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
故答案选D.
考点:反比例系数的几何意义.
3、A
【解析】
根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
【详解】
解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
AP≥AB,
AP≥3.5,
故选:A.
【点睛】
本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
4、C
【解析】
设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
【详解】
解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
根据题意,得:,
解得:,
答:甲种笔记本买了25本,乙种笔记本买了15本.
故选C.
【点睛】
本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
5、D
【解析】
根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.
【详解】
解:观察图形可知图案D通过平移后可以得到.
故选D.
【点睛】
本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
6、B
【解析】
分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
详解:∵OE是∠BOC的平分线,∠BOC=80°,
∴∠COE=∠BOC=×80°=40°,
∵OD⊥OE
∴∠DOE=90°,
∴∠DOC=∠DOE-∠COE=90°-40°=50°,
∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
故选B.
点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
7、D
【解析】
分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
故选D.
点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
8、D
【解析】
分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.
详解:根据题意,将代入,得:,
①+②,得:m+3n=8,
故选D.
点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.
9、D
【解析】
过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
【详解】
过C点作CD⊥AB,垂足为D.
根据旋转性质可知,∠B′=∠B.
在Rt△BCD中,tanB=,
∴tanB′=tanB=.
故选D.
【点睛】
本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
10、D
【解析】
分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
详解:在Rt△ABC中,∵
∴
①若C.O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵
∴
当OC经过点E时,OC最大,
则C.O两点距离的最大值为4;
所以②正确;
③如图2,当时,
∴四边形AOBC是矩形,
∴AB与OC互相平分,
但AB与OC的夹角为不垂直,
所以③不正确;
④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的
则:
所以④正确;
综上所述,本题正确的有:①②④;
故选D.
点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、a<2且a≠1.
【解析】
利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.
【详解】
试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,
∴△=b2-4ac>0,即4-4×(a-2)×1>0,
解这个不等式得,a<2,
又∵二次项系数是(a-1),
∴a≠1.
故a的取值范围是a<2且a≠1.
【点睛】
本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.
12、1.
【解析】
试题解析:设俯视图的正方形的边长为.
∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为
∴
解得
∴这个长方体的体积为4×3=1.
13、18π
【解析】解:设圆锥的半径为 ,母线长为 .则
解得
14、500
【解析】
设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.
【详解】
解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.
故答案为:500.
【点睛】
本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
15、
【解析】
解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.
在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣×× =.
故答案为:.
点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.
16、3
【解析】
设过点A(2,0)和点B(0,2)的直线的解析式为:,
则 ,解得: ,
∴直线AB的解析式为:,
∵点C(-1,m)在直线AB上,
∴,即.
故答案为3.
点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.
17、 49
【解析】
(1)观察等式可得 然后根据此规律就可解决问题;
(2)只需运用以上规律,采用拆项相消法即可解决问题.
【详解】
(1)观察等式,可得以下规律:,
∴
(2)
解得:n=49.
故答案为:49.
【点睛】
属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)答案见解析;(2)答案见解析.
【解析】
(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;
(2)根据相似三角形的性质得到 ,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论.
本题解析:
【详解】
证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;
(2)∵△ACE∽△BDE
∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.
【点睛】
本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.
19、,4.
【解析】
先括号内通分,然后计算除法,最后代入化简即可.
【详解】
原式= .
当时,原式=4.
【点睛】
此题考查分式的化简求值,解题关键在于掌握运算法则.
20、(1)作图见解析;(2)作图见解析;(3)P(,0).
【解析】
(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.
【详解】
解:(1)如图所示,△A1B1C1为所求做的三角形;
(2)如图所示,△A2B2O为所求做的三角形;
(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),
∴A2A3所在直线的解析式为:y=﹣5x+16,
令y=0,则x=,
∴P点的坐标(,0).
考点:平移变换;旋转变换;轴对称-最短路线问题.
21、(1)BC=BD+CE,(2);(3).
【解析】
(1)证明△ADB≌△EAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;
(2)过D作DE⊥AB,交BA的延长线于E,证明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根据勾股定理即可得到BD的长;
(3)过D作DE⊥BC于E,作DF⊥AB于F,证明△CED≌△AFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出
的值,根据勾股定理即可求出BD的长.
【详解】
解:(1)观察猜想
结论: BC=BD+CE,理由是:
如图①,∵∠B=90°,∠DAE=90°,
∴∠D+∠DAB=∠DAB+∠EAC=90°,
∴∠D=∠EAC,
∵∠B=∠C=90°,AD=AE,
∴△ADB≌△EAC,
∴BD=AC,EC=AB,
∴BC=AB+AC=BD+CE;
(2)问题解决
如图②,过D作DE⊥AB,交BA的延长线于E,
由(1)同理得:△ABC≌△DEA,
∴DE=AB=2,AE=BC=4,
Rt△BDE中,BE=6,
由勾股定理得:
(3)拓展延伸
如图③,过D作DE⊥BC于E,作DF⊥AB于F,
同理得:△CED≌△AFD,
∴CE=AF,ED=DF,
设AF=x,DF=y,
则,解得:
∴BF=2+1=3,DF=3,
由勾股定理得:
【点睛】
考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.
22、(1)见解析;(2)w=2x+9200,方案见解析;(3)0
(1)根据题意可得解.
(2)w与x之间的函数关系式为:w=20(240−x)+25(x−40)+15x+18(300−x);列不等式组解出40≤x≤240,可由w随x的增大而增大,得出总运费最小的调运方案.
(3)根据题意得出w与x之间的函数关系式,然后根据m的取值范围不同分别分析得出总运费最小的调运方案.
【详解】
解:(1)填表:
依题意得:20(240−x)+25(x−40)=15x+18(300−x).
解得:x=200.
(2)w与x之间的函数关系为:w=20(240−x)+25(x−40)+15x+18(300−x)=2x+9200.
依题意得:
∴40⩽x⩽240
在w=2x+9200中,∵2>0,
∴w随x的增大而增大,
故当x=40时,总运费最小,
此时调运方案为如表.
(3)由题意知w=20(240−x)+25(x−40)+(15-m)x+18(300−x)=(2−m)x+9200
∴0
方案的总运费不变;
2
【点睛】
此题考查一次函数的应用,解题关键在于根据题意列出w与x之间的函数关系式,并注意分类讨论思想的应用.
23、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
【解析】
(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;
(2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值.
(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.
【详解】
(1)y=300+30(60﹣x)=﹣30x+1.
(2)设每星期利润为W元,
W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.
∴x=55时,W最大值=2.
∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.
(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,
当x=52时,销售300+30×8=540,
当x=58时,销售300+30×2=360,
∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
【点睛】
本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.
24、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
【解析】
(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.
(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.
(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.
【详解】
(1)∵OA=OC,∠OAC=60°,
∴△OAC是等边三角形,
故∠AOC=60°.
(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;
∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,
而OC是⊙O的半径,
故PC与⊙O的位置关系是相切.
(3)如图;有三种情况:
①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣2);
劣弧MA的长为:;
②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣2);
劣弧MA的长为:;
③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,2);
优弧MA的长为:;
④当C、M重合时,C点符合M点的要求,此时M4(2,2);
优弧MA的长为:;
综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
【点睛】
本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.
四川省巴中学市恩阳区五校2021-2022学年中考数学猜题卷含解析: 这是一份四川省巴中学市恩阳区五校2021-2022学年中考数学猜题卷含解析,共27页。试卷主要包含了如果将直线l1等内容,欢迎下载使用。
2022年四川省巴中学市恩阳区中考冲刺卷数学试题含解析: 这是一份2022年四川省巴中学市恩阳区中考冲刺卷数学试题含解析,共17页。试卷主要包含了的倒数的绝对值是,如图图形中,是中心对称图形的是等内容,欢迎下载使用。
2022届衡水市滏阳中学中考数学考前最后一卷含解析: 这是一份2022届衡水市滏阳中学中考数学考前最后一卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,定义运算,下列运算正确的是等内容,欢迎下载使用。