2021-2022学年重庆市双福育才中学中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )
A. B. C. D.
2.下面调查方式中,合适的是( )
A.调查你所在班级同学的体重,采用抽样调查方式
B.调查乌金塘水库的水质情况,采用抽样调査的方式
C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
D.要了解全市初中学生的业余爱好,采用普查的方式
3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105
4.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )
A. B. C. D.
5.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为( )
A. B. C. D.
6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩
人数
2
3
2
3
4
1
则这些运动员成绩的中位数、众数分别为
A.、 B.、 C.、 D.、
7.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )
A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.25
8.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
A. B. C. D.
9.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30° B.40° C.50° D.60°
10.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.计算:()﹣1﹣(5﹣π)0=_____.
12.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.
13.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm
14.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.
15.在平面直角坐标系中,已知,A(2,0),C(0,﹣1),若P为线段OA上一动点,则CP+AP的最小值为_____.
16.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,那么等于( )
A.; B.; C.; D..
17.已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为______.
三、解答题(共7小题,满分69分)
18.(10分)如图所示,已知,试判断与的大小关系,并说明理由.
19.(5分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
20.(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
21.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)B点坐标为 ,并求抛物线的解析式;
(2)求线段PC长的最大值;
(3)若△PAC为直角三角形,直接写出此时点P的坐标.
22.(10分)如图,在平面直角坐标系xOy中,一次函数y=x与反比例函数的图象相交于点.
(1)求a、k的值;
(2)直线x=b()分别与一次函数y=x、反比例函数的图象相交于点M、N,当MN=2时,画出示意图并直接写出b的值.
23.(12分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
(1)求该反比例函数的解析式.
(2)求S与t的函数关系式;并求当S=时,对应的t值.
(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.
24.(14分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.
详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),
∴AC=-1-(-1)=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴矩形ACD A′的面积等于9,
∴AC·AA′=3AA′=9,
∴AA′=3,
∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,
∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1.
故选D.
点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.
2、B
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A、调查你所在班级同学的体重,采用普查,故A不符合题意;
B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
故选B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、A
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2180000的小数点向左移动6位得到2.18,
所以2180000用科学记数法表示为2.18×106,
故选A.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、C
【解析】
从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
故选C.
5、C
【解析】
过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可.
【详解】
解:如图,过点A作AF⊥DE于F,
在矩形ABCD中,AB=CD,
∵AE平分∠BED,
∴AF=AB,
∵BC=2AB,
∴BC=2AF,
∴∠ADF=30°,
在△AFD与△DCE中
∵∠C=∠AFD=90°,
∠ADF=∠DEC,
AF=DC,,
∴△AFD≌△DCE(AAS),
∴△CDE的面积=△AFD的面积=
∵矩形ABCD的面积=AB•BC=2AB2,
∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2﹣)AB2,
∴△ABE的面积=,
∴,
故选:C.
【点睛】
本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.
6、C
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
【点睛】
本题考查1.中位数;2.众数,理解概念是解题关键.
7、D
【解析】
分析:
根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.
详解:
由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,
∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,
又∵被调查学生总数为120人,
∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.
综上所述,选项D中数据正确.
故选D.
点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.
8、B
【解析】
根据简单概率的计算公式即可得解.
【详解】
一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
故选B.
考点:简单概率计算.
9、C
【解析】
由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
【详解】
∵∠B=70°,∠BAC=30°
∴∠ACB=80°
∵将△ABC绕点C顺时针旋转得△EDC.
∴AC=CE,∠ACE=∠ACB=80°
∴∠CAE=∠AEC=50°
故选C.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
10、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题
【详解】
解:原式=2﹣1
=1,
故答案为1.
【点睛】
此题考查负整数指数幂,0指数幂的化简,难度不大
12、15°、30°、60°、120°、150°、165°
【解析】
分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.
详解:①、∵CD∥AB, ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;
CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°
②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;
CE∥AB时,∠ECB=∠B=60°.
③如图2,DE∥AB时,延长CD交AB于F, 则∠BFC=∠D=45°,
在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,
∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.
点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.
13、
【解析】
试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:×4=.
考点:菱形的性质.
14、270
【解析】
根据三角形的内角和与平角定义可求解.
【详解】
解析:如图,根据题意可知∠5=90°,
∴ ∠3+∠4=90°,
∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.
【点睛】
本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.
15、
【解析】
可以取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,根据勾股定理可得AD=3,证明△APM∽△ADO得,PM=AP.当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.
【详解】
如图,
取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,
在Rt△AOD中,
∵OA=2,OD=1,
∴AD==3,
∵∠PAM=∠DAO,∠AMP=∠AOD=90°,
∴△APM∽△ADO,
∴,
即,
∴PM=AP,
∴PC+AP=PC+PM,
∴当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.
∵△CND∽△AOD,
∴,
即
∴CN=.
所以CP+AP的最小值为.
故答案为:.
【点睛】
此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到AP的等量线段与线段CP相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM,使问题得解.
16、D
【解析】
利用△DAO与△DEA相似,对应边成比例即可求解.
【详解】
∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA
∴△DAO∽△DEA
∴
即
∵AE=AD
∴
故选D.
17、
【解析】
试题分析:当n=3时,A=≈0.3178,B=1,A<B;
当n=4时,A=≈0.2679,B=≈0.4142,A<B;
当n=5时,A=≈0.2631,B=≈0.3178,A<B;
当n=6时,A=≈0.2134,B=≈0.2679,A<B;
……
以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n≥3时,A、B的关系始终是A<B.
三、解答题(共7小题,满分69分)
18、.
【解析】
首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.
【详解】
解:∠AED=∠ACB.
理由:如图,分别标记∠1,∠2,∠3,∠1.
∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).
∴∠2=∠1.
∴EF∥AB(内错角相等,两直线平行).
∴∠3=∠ADE(两直线平行,内错角相等).
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换).
∴DE∥BC(同位角相等,两直线平行).
∴∠AED=∠ACB(两直线平行,同位角相等).
【点睛】
本题重点考查平行线的性质和判定,难度适中.
19、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
【解析】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
依题意,得:=3×,
解得:x=4,
经检验,x=4是原方程的解,且符合题意.
答:第一批饮料进货单价是4元/瓶;
(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
设销售单价为y元/瓶,
依题意,得:(450+1350)y﹣1800﹣8100≥2100,
解得:y≥1.
答:销售单价至少为1元/瓶.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
20、调整后的滑梯AD比原滑梯AB增加2.5米
【解析】
试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.
试题解析: Rt△ABD中,
∵AC=3米,
∴AD=2AC=6(m)
∵在Rt△ABC中,
∴AD−AB=6−3.53≈2.5(m).
∴调整后的滑梯AD比原滑梯AB增加2.5米.
21、(1)(4,6);y=1x1﹣8x+6(1);(3)点P的坐标为(3,5)或().
【解析】
(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.
(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.
(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.
【详解】
解:(1)∵B(4,m)在直线y=x+1上,
∴m=4+1=6,
∴B(4,6),
故答案为(4,6);
∵A(,),B(4,6)在抛物线y=ax1+bx+6上,
∴,解得,
∴抛物线的解析式为y=1x1﹣8x+6;
(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),
∴PC=(n+1)﹣(1n1﹣8n+6),
=﹣1n1+9n﹣4,
=﹣1(n﹣)1+,
∵PC>0,
∴当n=时,线段PC最大且为.
(3)∵△PAC为直角三角形,
i)若点P为直角顶点,则∠APC=90°.
由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;
ii)若点A为直角顶点,则∠PAC=90°.
如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.
过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,
∴MN=AN=,
∴OM=ON+MN=+=3,
∴M(3,0).
设直线AM的解析式为:y=kx+b,
则:,解得,
∴直线AM的解析式为:y=﹣x+3 ①
又抛物线的解析式为:y=1x1﹣8x+6 ②
联立①②式,
解得:或(与点A重合,舍去),
∴C(3,0),即点C、M点重合.
当x=3时,y=x+1=5,
∴P1(3,5);
iii)若点C为直角顶点,则∠ACP=90°.
∵y=1x1﹣8x+6=1(x﹣1)1﹣1,
∴抛物线的对称轴为直线x=1.
如图1,作点A(,)关于对称轴x=1的对称点C,
则点C在抛物线上,且C(,).
当x=时,y=x+1=.
∴P1(,).
∵点P1(3,5)、P1(,)均在线段AB上,
∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).
【点睛】
本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.
22、(1),k=2;(2)b=2或1.
【解析】
(1)依据直线y=x与双曲线(k≠0)相交于点,即可得到a、k的值;
(2)分两种情况:当直线x=b在点A的左侧时,由x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x2,可得x=2,即b=2.
【详解】
(1)∵直线y=x与双曲线(k≠0)相交于点,∴,∴,∴,解得:k=2;
(2)如图所示:
当直线x=b在点A的左侧时,由x=2,可得:x=1,x=﹣2(舍去),即b=1;
当直线x=b在点A的右侧时,由x2,可得x=2,x=﹣1(舍去),即b=2;
综上所述:b=2或1.
【点睛】
本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式.
23、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.
【解析】
(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.
(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;
(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.
【详解】
解:(1)∵正方形OABC的面积为9,
∴点B的坐标为:(3,3),
∵点B在反比例函数y=(k>0,x>0)的图象上,
∴3=,
即k=9,
∴该反比例函数的解析式为:y= y=(x>0);
(2)根据题意得:P(t,),
分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);
若S=,
则﹣3t+9=,
解得:t=;
②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;
若S=,则9﹣=,
解得:t=6;
∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);
当S=时,对应的t值为或6;
(3)存在.
若OB=BF=3,此时CF=BC=3,
∴OF=6,
∴6=,
解得:t=;
若OB=OF=3,则3=,
解得:t= ;
若BF=OF,此时点F与C重合,t=3;
∴当t=或或3时,使△FBO为等腰三角形.
【点睛】
此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.
24、(1)75°(2)见解析
【解析】
(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;
(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.
【详解】
解:(1)∵△ABC是等边三角形
∴∠ACB=60°,BC=AC
∵等边△ABC绕点C顺时针旋转90°得到△EFC
∴CF=BC,∠BCF=90°,AC=CE
∴CF=AC
∵∠BCF=90°,∠ACB=60°
∴∠ACF=∠BCF﹣∠ACB=30°
∴∠CFA=(180°﹣∠ACF)=75°
(2)∵△ABC和△EFC是等边三角形
∴∠ACB=60°,∠E=60°
∵CD平分∠ACE
∴∠ACD=∠ECD
∵∠ACD=∠ECD,CD=CD,CA=CE,
∴△ECD≌△ACD(SAS)
∴∠DAC=∠E=60°
∴∠DAC=∠ACB
∴AD∥BC
【点睛】
本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
重庆市双福育才中学2023-2024学年数学八年级第一学期期末学业质量监测模拟试题【含解析】: 这是一份重庆市双福育才中学2023-2024学年数学八年级第一学期期末学业质量监测模拟试题【含解析】,共18页。试卷主要包含了下列图形中对称轴只有两条的是,下列说法正确的是,在分式中x的取值范围是等内容,欢迎下载使用。
重庆市双福育才中学2023-2024学年数学八年级第一学期期末联考试题【含解析】: 这是一份重庆市双福育才中学2023-2024学年数学八年级第一学期期末联考试题【含解析】,共19页。试卷主要包含了下列因式分解正确的是,如图,在中,,,求证,已知,则a+b+c的值是,若关于的分式方程无解,则的值是等内容,欢迎下载使用。
重庆市双福育才中学2023-2024学年数学八上期末预测试题含答案: 这是一份重庆市双福育才中学2023-2024学年数学八上期末预测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,下列分式中,是最简分式的是,四个长宽分别为,的小长方形等内容,欢迎下载使用。