2021-2022学年西藏拉萨达孜县中考冲刺卷数学试题含解析
展开1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )
A.16B.14C.12D.10
2.如图,空心圆柱体的左视图是( )
A.B.C.D.
3.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )
A.10B.9C.8D.7
4.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )
A.15mB.25mC.30mD.20m
5.下列等式正确的是( )
A.(a+b)2=a2+b2B.3n+3n+3n=3n+1
C.a3+a3=a6D.(ab)2=a
6.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米
A.B.C.+1D.3
7.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )
A.9.5×106B.9.5×107C.9.5×108D.9.5×109
8.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为( )
A.B.C.4D.2+
9.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )
A.(3,2)B.(3,1)C.(2,2)D.(4,2)
10.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为( )
A.﹣2B.0C.1D.3
11. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )
A.20°B.30°C.40°D.50°
12.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为( )
A.B.C.D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.按照一定规律排列依次为,…..按此规律,这列数中的第100个数是_____.
14.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.
15.如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.
16.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为______.
17.分式方程的解为__________.
18.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知关于x的方程x2-(m+2)x+(2m-1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
20.(6分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E.
(1)求证:EF是⊙O的切线;
(2)连接BC,若AB=5,BC=3,求线段AE的长.
21.(6分)已知.化简;如果、是方程的两个根,求的值.
22.(8分)计算下列各题:
(1)tan45°−sin60°•cs30°;
(2)sin230°+sin45°•tan30°.
23.(8分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.
综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.
24.(10分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.
(1)求点D沿三条圆弧运动到点G所经过的路线长;
(2)判断线段GB与DF的长度关系,并说明理由.
25.(10分)已知抛物线过点,,求抛物线的解析式,并求出抛物线的顶点坐标.
26.(12分)(1)计算:;
(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.
27.(12分)如图,已知∠AOB=45°,AB⊥OB,OB=1.
(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);
(1)若M为AO的中点,求AM的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据切线长定理进行求解即可.
【详解】
∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
∴AF=AD=2,BD=BE,CE=CF,
∵BE+CE=BC=5,
∴BD+CF=BC=5,
∴△ABC的周长=2+2+5+5=14,
故选B.
【点睛】
本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
2、C
【解析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
从左边看是三个矩形,中间矩形的左右两边是虚线,
故选C.
【点睛】
本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
3、D
【解析】
分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.
详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.
故选D.
点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.
4、D
【解析】
根据三角形的中位线定理即可得到结果.
【详解】
解:由题意得AB=2DE=20cm,
故选D.
【点睛】
本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
5、B
【解析】
(1)根据完全平方公式进行解答;
(2)根据合并同类项进行解答;
(3)根据合并同类项进行解答;
(4)根据幂的乘方进行解答.
【详解】
解:A、(a+b)2=a2+2ab+b2,故此选项错误;
B、3n+3n+3n=3n+1,正确;
C、a3+a3=2a3,故此选项错误;
D、(ab)2=a2b,故此选项错误;
故选B.
【点睛】
本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.
6、C
【解析】
由题意可知,AC=1,AB=2,∠CAB=90°
据勾股定理则BC=m;
∴AC+BC=(1+)m.
答:树高为(1+)米.
故选C.
7、B
【解析】
试题分析: 15000000=1.5×2.故选B.
考点:科学记数法—表示较大的数
8、B
【解析】
根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
【详解】
如图:
BC=AB=AC=1,
∠BCB′=120°,
∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
9、A
【解析】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,
∴=,
∵BG=6,
∴AD=BC=2,
∵AD∥BG,
∴△OAD∽△OBG,
∴=,
∴=,
解得:OA=1,∴OB=3,
∴C点坐标为:(3,2),
故选A.
10、B
【解析】
解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.
【详解】
由关于y的不等式组,可整理得
∵该不等式组解集无解,
∴2a+4≥﹣2
即a≥﹣3
又∵得x=
而关于x的分式方程有负数解
∴a﹣4<1
∴a<4
于是﹣3≤a<4,且a 为整数
∴a=﹣3、﹣2、﹣1、1、1、2、3
则符合条件的所有整数a的和为1.
故选B.
【点睛】
本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
11、C
【解析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
【详解】
∵∠1=50°,
∴∠3=∠1=50°,
∴∠2=90°−50°=40°.
故选C.
【点睛】
本题主要考查平行线的性质,熟悉掌握性质是关键.
12、A
【解析】
过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
【详解】
过O作OC⊥AB于C,过N作ND⊥OA于D,
∵N在直线y=x+3上,
∴设N的坐标是(x,x+3),
则DN=x+3,OD=-x,
y=x+3,
当x=0时,y=3,
当y=0时,x=-4,
∴A(-4,0),B(0,3),
即OA=4,OB=3,
在△AOB中,由勾股定理得:AB=5,
∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
∴3×4=5OC,
OC=,
∵在Rt△NOM中,OM=ON,∠MON=90°,
∴∠MNO=45°,
∴sin45°=,
∴ON=,
在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
即(x+3)2+(-x)2=()2,
解得:x1=-,x2=,
∵N在第二象限,
∴x只能是-,
x+3=,
即ND=,OD=,
tan∠AON=.
故选A.
【点睛】
本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据按一定规律排列的一列数依次为…,可得第n个数为,据此可得第100个数.
【详解】
由题意,数列可改写成,…,
则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,
∴第n个数为=,
∴这列数中的第100个数为=;
故答案为:.
【点睛】
本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.
14、60.
【解析】
首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
【详解】
设半圆的圆心为O,连接OE,OA,
∵CD=2OC=2BC,
∴OC=BC,
∵∠ACB=90°,即AC⊥OB,
∴OA=BA,
∴∠AOC=∠ABC,
∵∠BAC=30°,
∴∠AOC=∠ABC=60°,
∵AE是切线,
∴∠AEO=90°,
∴∠AEO=∠ACO=90°,
∵在Rt△AOE和Rt△AOC中,
,
∴Rt△AOE≌Rt△AOC(HL),
∴∠AOE=∠AOC=60°,
∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
∴点E所对应的量角器上的刻度数是60°,
故答案为:60.
【点睛】
本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
15、4或4.
【解析】
①当AF<AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过E作EH⊥MN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到A′H=,根据勾股定理列方程即可得到结论;②当AF>AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论.
【详解】
①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
则AM=AD=3,
过E作EH⊥MN于H,
则四边形AEHM是矩形,
∴MH=AE=2,
∵A′H=,
∴A′M=,
∵MF2+A′M2=A′F2,
∴(3-AF)2+()2=AF2,
∴AF=2,
∴EF==4;
②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
过A′作HG∥BC交AB于G,交CD于H,
则四边形AGHD是矩形,
∴DH=AG,HG=AD=6,
∴A′H=A′G=HG=3,
∴EG==,
∴DH=AG=AE+EG=3,
∴A′F==6,
∴EF==4,
综上所述,折痕EF的长为4或4,
故答案为:4或4.
【点睛】
本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.
16、
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为4dm,圆柱高为2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴这圈金属丝的周长最小为2AC=4dm.
故答案为:4dm
【点睛】
本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.
17、-1
【解析】
【分析】先去分母,化为整式方程,然后再进行检验即可得.
【详解】两边同乘(x+2)(x-2),得:x-2﹣3x=0,
解得:x=-1,
检验:当x=-1时,(x+2)(x-2)≠0,
所以x=-1是分式方程的解,
故答案为:-1.
【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
18、
【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
【详解】
设AP,EF交于O点,
∵四边形ABCD为菱形,
∴BC∥AD,AB∥CD.
∵PE∥BC,PF∥CD,
∴PE∥AF,PF∥AE.
∴四边形AEFP是平行四边形.
∴S△POF=S△AOE.
即阴影部分的面积等于△ABC的面积.
∵△ABC的面积等于菱形ABCD的面积的一半,
菱形ABCD的面积=ACBD=5,
∴图中阴影部分的面积为5÷2=.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见详解;(2)4+或4+.
【解析】
(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论.
(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.
【详解】
解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
∴在实数范围内,m无论取何值,(m-2)2+4≥4>0,即△>0.
∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根.
(2)∵此方程的一个根是1,
∴12-1×(m+2)+(2m-1)=0,解得,m=2,
则方程的另一根为:m+2-1=2+1=3.
①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为1+3+=4+.
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为1+3+=4+.
20、(1)证明见解析
(2)
【解析】
(1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,根据切线的判定定理证明;
(2)根据勾股定理求出AC,证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算即可.
【详解】
(1)证明:连接OC,
∵OA=OC,
∴∠OCA=∠BAC,
∵点C是的中点,
∴∠EAC=∠BAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵AE⊥EF,
∴OC⊥EF,即EF是⊙O的切线;
(2)解:∵AB为⊙O的直径,
∴∠BCA=90°,
∴AC==4,
∵∠EAC=∠BAC,∠AEC=∠ACB=90°,
∴△AEC∽△ACB,
∴,
∴AE=.
【点睛】
本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.
21、 (1) ;(2)-4.
【解析】
(1)先通分,再进行同分母的减法运算,然后约分得到原式
(2)利用根与系数的关系得到 然后利用整体代入的方法计算.
【详解】
解:(1)
.
(2)∵、是方程,
∴,
∴
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时,, 也考查了分式的加减法.
22、(1);(2).
【解析】
(1)原式=1﹣×=1﹣=;
(2)原式=×+×=.
【点睛】
本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.
23、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为.
【解析】
综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切;
(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.
【详解】
(1)①作∠BAC的平分线,交BC于点O;
②以O为圆心,OC为半径作圆.AB与⊙O的位置关系是相切.
(2)相切;
∵AC=5,BC=12,
∴AD=5,AB==13,
∴DB=AB-AD=13-5=8,
设半径为x,则OC=OD=x,BO=(12-x)
x2+82=(12-x)2,
解得:x=.
答:⊙O的半径为.
【点睛】
本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定.
24、(1)6π;(2)GB=DF,理由详见解析.
【解析】
(1)根据弧长公式l= 计算即可;
(2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.
【详解】
解:(1)∵AD=2,∠DAE=90°,
∴弧DE的长 l1= =π,
同理弧EF的长 l2= =2π,弧FG的长 l3= =3π,
所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.
(2)GB=DF.
理由如下:延长GB交DF于H.
∵CD=CB,∠DCF=∠BCG,CF=CG,
∴△FDC≌△GBC.
∴GB=DF.
【点睛】
本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.
25、y=+2x;(-1,-1).
【解析】
试题分析:首先将两点代入解析式列出关于b和c的二元一次方程组,然后求出b和c的值,然后将抛物线配方成顶点式,求出顶点坐标.
试题解析:将点(0,0)和(1,3)代入解析式得:解得:
∴抛物线的解析式为y=+2x ∴y=+2x=-1 ∴顶点坐标为(-1,-1).
考点:待定系数法求函数解析式.
26、(1);(1)1.
【解析】
(1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;
(1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将a−b的值整体代入计算可得.
【详解】
(1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;
(1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,
当a﹣b=时,
原式=()1=1.
【点睛】
本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力.
27、(1)详见解析;(1).
【解析】
(1)以点M为顶点,作∠AMN=∠O即可;
(1)由∠AOB=45°,AB⊥OB,可知△AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.
【详解】
(1)作图如图所示;
(1)由题知△AOB为等腰Rt△AOB,且OB=1,
所以,AO=OB=1
又M为OA的中点,
所以,AM=1=
【点睛】
本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明△AOB为等腰为等腰直角三角形是解(1)的关键.
西藏西藏达孜县达标名校2021-2022学年中考一模数学试题含解析: 这是一份西藏西藏达孜县达标名校2021-2022学年中考一模数学试题含解析,共20页。试卷主要包含了下列命题正确的是,如图等内容,欢迎下载使用。
西藏西藏达孜县2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份西藏西藏达孜县2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了下列各数中最小的是,4的平方根是等内容,欢迎下载使用。
西藏拉萨达孜县2022年中考数学猜题卷含解析: 这是一份西藏拉萨达孜县2022年中考数学猜题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体的俯视图是,﹣22×3的结果是等内容,欢迎下载使用。