2021-2022学年重庆市渝北八中学中考数学模拟精编试卷含解析
展开1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为( )
A.B.C.4D.2+
2.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是( )
A.AC=CDB.OM=BMC.∠A=∠ACDD.∠A=∠BOD
3.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1B.C.D.
4.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为( )
A.1.23×106B.1.23×107C.0.123×107D.12.3×105
5.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )
A.810 年B.1620 年C.3240 年D.4860 年
6.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )
A.B.
C.D.
7.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
如图所示,请根据所学知识计算:圆形木材的直径AC是( )
A.13寸B.20寸C.26寸D.28寸
8.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是( )
A.B.C.D.
9.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )
A.点的左边B.点与点之间C.点与点之间D.点的右边
10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是( )
A.①②④B.①③C.①②③D.①③④
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=_____度.
12.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
13.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.
14.=________
15.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.
16.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____.
三、解答题(共8题,共72分)
17.(8分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求⊙O的半径.
18.(8分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径;
(3)在(2)的条件下,若点B等分半圆CD,求DE的长.
19.(8分)如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.
20.(8分)图 1 和图 2 中,优弧纸片所在⊙O 的半径为 2,AB=2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A′.
发现:
(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA′= ;
(2)当 BA′与⊙O 相切时,如图 2,求折痕的长.
拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A′, O′,设∠MNP=α.
(1)当α=15°时,过点 A′作 A′C∥MN,如图 3,判断 A′C 与半圆 O 的位置关系,并说明理由;
(2)如图 4,当α= °时,NA′与半圆 O 相切,当α= °时,点 O′落在上.
(3)当线段 NO′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.
21.(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式的解集.
22.(10分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图1;
(2)求图2中表示家长“赞成”的圆心角的度数;
(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?
23.(12分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且
AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
24.一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
【详解】
如图:
BC=AB=AC=1,
∠BCB′=120°,
∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
2、D
【解析】
根据垂径定理判断即可.
【详解】
连接DA.
∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.
∵2∠DAB=∠BOD,∴∠CAD=∠BOD.
故选D.
【点睛】
本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
3、C
【解析】
分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选:C.
点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
4、A
【解析】
分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
详解:1230000这个数用科学记数法可以表示为
故选A.
点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
5、B
【解析】
根据半衰期的定义,函数图象的横坐标,可得答案.
【详解】
由横坐标看出1620年时,镭质量减为原来的一半,
故镭的半衰期为1620年,
故选B.
【点睛】
本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.
6、D
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项正确;
故选:D.
【点睛】
此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
7、C
【解析】
分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.
详解:设⊙O的半径为r.
在Rt△ADO中,AD=5,OD=r-1,OA=r,
则有r2=52+(r-1)2,
解得r=13,
∴⊙O的直径为26寸,
故选C.
点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题
8、A
【解析】
一一对应即可.
【详解】
最左边有一个,中间有两个,最右边有三个,所以选A.
【点睛】
理解立体几何的概念是解题的关键.
9、C
【解析】
根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
【详解】
∵|a|>|c|>|b|,
∴点A到原点的距离最大,点C其次,点B最小,
又∵AB=BC,
∴原点O的位置是在点B、C之间且靠近点B的地方.
故选:C.
【点睛】
此题考查了实数与数轴,理解绝对值的定义是解题的关键.
10、B
【解析】
∵函数图象的对称轴为:x=-==1,∴b=﹣2a,即2a+b=0,①正确;
由图象可知,当﹣1<x<3时,y<0,②错误;
由图象可知,当x=1时,y=0,∴a﹣b+c=0,
∵b=﹣2a,∴3a+c=0,③正确;
∵抛物线的对称轴为x=1,开口方向向上,
∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;
故④错误;
故选B.
点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据平行线的性质即可得到∠2=∠ABC+∠1,据此进行计算即可.
【详解】
解:∵直线m∥n,
∴∠2=∠ABC+∠1=30°+20°=1°,
故答案为:1.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
12、k≥﹣1
【解析】
分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.
详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
∴△=12-1×1×(-k)=16+1k≥0,
解得:k≥-1.
故答案为k≥-1.
点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
13、40
【解析】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,
根据题意得:,
解得:.
答:A型号的计算器的每只进价为40元.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
14、13
【解析】
=2+9-4+6
=13.
故答案是:13.
15、3
【解析】
试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
考点:3.等腰三角形的性质;3.垂直平分线的性质.
16、6﹣π
【解析】
过F作FM⊥BE于M,则∠FME=∠FMB=90°,
∵四边形ABCD是正方形,AB=2,
∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
由勾股定理得:BD=2,
∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,
∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
∴BM=FM=2,ME=2,
∴阴影部分的面积=×2×2+×4×2+-=6-π.
故答案为:6-π.
点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.
三、解答题(共8题,共72分)
17、(1)证明见解析;(1)
【解析】
试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;
(1)求出△BEC∽△BCA,得出比例式,代入求出即可.
试题解析:(1)证明:连接OE、EC.
∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.
∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;
(1)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE•BA.∵AE:EB=1:1,设AE=x,则BE=1x,BA=3x.∵BC=6,∴61=1x•3x,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O的半径=.
点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此题的关键.
18、(1)证明见解析;(2);(3);
【解析】
(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2
∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,
于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;
(2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;
(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设
DH=x,则DE=2x,所以 然后求出x即可
得到DE的长.
【详解】
(1)证明:连接OA、AD,如图,
∵∠B=2∠P,∠B=∠ADC,
∴∠ADC=2∠P,
∵AP=AC,
∴∠P=∠ACP,
∴∠ADC=2∠ACP,
∵CD为直径,
∴∠DAC=90°,
∴∠ADC=60°,∠C=30°,
∴△ADO为等边三角形,
∴∠AOP=60°,
而∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥PA,
∴PA是⊙O的切线;
(2)解:在Rt△OAP中,∵∠P=30°,
∴OP=2OA,
∴
∴⊙O的直径为;
(3)解:作EH⊥AD于H,如图,
∵点B等分半圆CD,
∴∠BAC=45°,
∴∠DAE=45°,
设DH=x,
在Rt△DHE中,DE=2x,
在Rt△AHE中,
∴
即
解得
∴
【点睛】
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
19、(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).
【解析】
分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;
(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.
(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标.
详解:(1)∵点A在正比例函数y=2x上,
∴把x=4代入正比例函数y=2x,
解得y=8,∴点A(4,8),
把点A(4,8)代入反比例函数y=,得k=32,
(2)∵点A与B关于原点对称,
∴B点坐标为(﹣4,﹣8),
由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;
(3)∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形APBQ是平行四边形,
∴S△POA=S平行四边形APBQ×=×224=1,
设点P的横坐标为m(m>0且m≠4),
得P(m,),
过点P、A分别做x轴的垂线,垂足为E、F,
∵点P、A在双曲线上,
∴S△POE=S△AOF=16,
若0<m<4,如图,
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=1.
∴(8+)•(4﹣m)=1.
∴m1=﹣7+3,m2=﹣7﹣3(舍去),
∴P(﹣7+3,16+);
若m>4,如图,
∵S△AOF+S梯形AFEP=S△AOP+S△POE,
∴S梯形PEFA=S△POA=1.
∴×(8+)•(m﹣4)=1,
解得m1=7+3,m2=7﹣3(舍去),
∴P(7+3,﹣16+).
∴点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).
点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.
20、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或 45°≤α<90°.
【解析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;
(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;
(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
【详解】
发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,
∵⊙O的半径为2,AB=2,
∴OH==
在△BOH中,OH=1,BO=2
∴∠ABO=30°
∵图形沿BP折叠,得到点A的对称点A′.
∴∠OBA′=∠ABO=30°
∴∠ABA′=60°
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
∵∠OBH=30°,∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.∴OG=OB=1.∴BG=.
∵OG⊥BP,∴BG=PG=.
∴BP=2.∴折痕的长为2
拓展:(1)相切.
分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
∵A'C∥MN
∴四边形A'HOD是矩形
∴A'H=O
∵α=15°∴∠A'NH=30
∴OD=A'H=A'N=MN=2
∴A'C与半圆
(2)当NA′与半圆O相切时,则ON⊥NA′,
∴∠ONA′=2α=90°,
∴α=45
当O′在上时,连接MO′,则可知NO′=MN,
∴∠O′MN=0°
∴∠MNO′=60°,
∴α=30°,
故答案为:45°;30°.
(3)∵点P,M不重合,∴α>0,
由(2)可知当α增大到30°时,点O′在半圆上,
∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
∴α<90°,
∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
综上所述0°<α<30°或45°≤α<90°.
【点睛】
本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
21、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
【详解】
(1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函数解析式y=﹣,反比例函数解析式y=.
(2)根据题意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由图象可得:x<﹣2或0<x<4
【点睛】
本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
22、(1)答案见解析(2)36°(3)4550名
【解析】
试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;
(2)利用360乘以对应的比例即可求解;
(3)利用总人数6500乘以对应的比例即可求解.
(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人,
;
(2)360×=36°;
(3)反对中学生带手机的大约有6500×=4550(名).
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.
23、(1)见解析
(2)当AF=时,四边形BCEF是菱形.
【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.
(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.
【详解】
(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形.
∵∠ABC=90°,AB=4,BC=3,
∴AC=.
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.
∴,即.∴.
∵FG=CG,∴FC=2CG=,
∴AF=AC﹣FC=5﹣.
∴当AF=时,四边形BCEF是菱形.
24、(1)(2)
【解析】
试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
试题解析:解:(1).
(2)用表格列出所有可能的结果:
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
∴P(两次都摸到红球)==.
考点:概率统计
第二次
第一次
红球1
红球2
白球
黑球
红球1
(红球1,红球2)
(红球1,白球)
(红球1,黑球)
红球2
(红球2,红球1)
(红球2,白球)
(红球2,黑球)
白球
(白球,红球1)
(白球,红球2)
(白球,黑球)
黑球
(黑球,红球1)
(黑球,红球2)
(黑球,白球)
重庆市实验中学2022年中考数学模拟精编试卷含解析: 这是一份重庆市实验中学2022年中考数学模拟精编试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,1﹣的相反数是等内容,欢迎下载使用。
北京三帆中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份北京三帆中学2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了3的倒数是,的绝对值是等内容,欢迎下载使用。
安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,点A等内容,欢迎下载使用。