2022届达州市重点中学中考数学模试卷含解析
展开
这是一份2022届达州市重点中学中考数学模试卷含解析,共23页。试卷主要包含了下列计算正确的是,有下列四种说法等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( )
A.2x﹣x=1 B.x2•x3=x6
C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )
A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×2
3.下列交通标志是中心对称图形的为( )
A. B. C. D.
4.如图,在中,点D为AC边上一点,则CD的长为( )
A.1 B. C.2 D.
5.下列计算正确的是( )
A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=0
6.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )
A.2 B. C. D.
7.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.6 B.8 C.10 D.12
8.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是( )
A. B. C. D.
9.有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;
③弦是直径;④半圆是弧,但弧不一定是半圆.
其中,错误的说法有( )
A.1种 B.2种 C.3种 D.4种
10.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( )
A.20 B.25 C.30 D.35
11.﹣的绝对值是( )
A.﹣ B. C.﹣2 D.2
12.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:
x
…
–2
–1
0
1
2
…
y
…
0
4
6
6
4
…
从上表可知,下列说法错误的是
A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.
14.在函数中,自变量x的取值范围是 .
15.已知,则=_______.
16.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
17.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.
18.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知线段a及如图形状的图案.
(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)
(2)当a=6时,求图案中阴影部分正六边形的面积.
20.(6分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.
21.(6分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.
22.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
(1)请你补全条形统计图;
(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;
(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
23.(8分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?
24.(10分)综合与实践﹣﹣旋转中的数学
问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD∽矩形A′B′C′D′,它们各自对角线的交点重合于点O,连接AA′,CC′.请你帮他们解决下列问题:
观察发现:(1)如图1,若A′B′∥AB,则AA′与CC′的数量关系是______;
操作探究:(2)将图1中的矩形ABCD保持不动,矩形A′B′C′D′绕点O逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;
操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.
25.(10分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
26.(12分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)
27.(12分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.
求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.
【详解】
解:A、2x-x=x,错误;
B、x2•x3=x5,错误;
C、(m-n)2=m2-2mn+n2,错误;
D、(-xy3)2=x2y6,正确;
故选D.
【点睛】
考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.
2、B
【解析】
全组有x名同学,则每名同学所赠的标本为:(x-1)件,
那么x名同学共赠:x(x-1)件,
所以,x(x-1)=132,
故选B.
3、C
【解析】
根据中心对称图形的定义即可解答.
【详解】
解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.
【点睛】
本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.
4、C
【解析】
根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.
【详解】
∵∠DBC=∠A,∠C=∠C,
∴△BCD∽△ACB,
∴
∴
∴CD=2.
故选:C.
【点睛】
主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
5、D
【解析】
试题解析:A原式=2x2,故A不正确;
B原式=x6,故B不正确;
C原式=x5,故C不正确;
D原式=x2-x2=0,故D正确;
故选D
考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.
6、C
【解析】
解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.
点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
7、C
【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
连接AD,MA
∵△ABC是等腰三角形,点D是BC边上的中点
∴
∴
解得
∵EF是线段AC的垂直平分线
∴点A关于直线EF的对称点为点C
∴
∵
∴AD的长为BM+MD的最小值
∴△CDM的周长最短
故选:C.
【点睛】
本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.
8、D
【解析】
【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.
【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,
∵∠ACB=90°,即∠BCD+∠ACD=90°,
∴∠ACD=∠B=α,
A、在Rt△BCD中,sinα=,故A正确,不符合题意;
B、在Rt△ABC中,sinα=,故B正确,不符合题意;
C、在Rt△ACD中,sinα=,故C正确,不符合题意;
D、在Rt△ACD中,cosα=,故D错误,符合题意,
故选D.
【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
9、B
【解析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.
【详解】
解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.
故选B.
【点睛】
本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
10、B
【解析】
设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:
,,
∴,
∴当时,(亿),
∵400-375=25,
∴该行可贷款总量减少了25亿.
故选B.
11、B
【解析】
根据求绝对值的法则,直接计算即可解答.
【详解】
,
故选:B.
【点睛】
本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
12、C
【解析】
当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3﹣或1
【解析】
分两种情况:情况一:如图一所示,当∠A'DE=90°时;
情况二:如图二所示,当∠A'ED=90°时.
【详解】
解:如图,当∠A'DE=90°时,△A'ED为直角三角形,
∵∠A'=∠A=30°,
∴∠A'ED=60°=∠BEC=∠B,
∴△BEC是等边三角形,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=1,
设AD=A'D=x,则DE=1﹣x,
∵Rt△A'DE中,A'D=DE,
∴x=(1﹣x),
解得x=3﹣,
即AD的长为3﹣;
如图,当∠A'ED=90°时,△A'ED为直角三角形,
此时∠BEC=90°,∠B=60°,
∴∠BCE=30°,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=4﹣1=3,
∴DE=3﹣x,
设AD=A'D=x,则
Rt△A'DE中,A'D=1DE,即x=1(3﹣x),
解得x=1,
即AD的长为1;
综上所述,即AD的长为3﹣或1.
故答案为3﹣或1.
【点睛】
本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.
14、。
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须。
15、3
【解析】
依据可设a=3k,b=2k,代入化简即可.
【详解】
∵,
∴可设a=3k,b=2k,
∴=3
故答案为3.
【点睛】
本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.
16、60°或120°.
【解析】
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
【详解】
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,
∴
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
于是∠ACB的度数为60°或120°,
故答案为60°或120°.
【点睛】
本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
17、60°
【解析】
先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.
【详解】
(6-2)×180°÷6=120°,
∠1=120°-60°=60°.
故答案为:60°.
【点睛】
题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键.
18、40°
【解析】
根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
【详解】
根据旋转的性质,可得:AB=AD,∠BAD=100°,
∴∠B=∠ADB=×(180°−100°)=40°.
故填:40°.
【点睛】
本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为
【解析】
试题分析:
(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;
(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.
试题解析:
(1)所作图形如下图所示:
(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,
∴∠ABO=30°,BC=OC=CD=AD,
∴BE=OB·cos30°=,OE=3,
∴AB=,
∴CD=,
∴S△OCD=,
∴S阴影=6S△OCD=.
20、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.
【解析】
(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论.
(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.
【详解】
解:(1)证明:∵在△ADC和△ABC中,
∴△ADC≌△ABC(SSS).∴∠1=∠2.
(2)四边形BCDE是菱形,理由如下:
如答图,∵∠1=∠2,DC=BC,∴AC垂直平分BD.
∵OE=OC,∴四边形DEBC是平行四边形.
∵AC⊥BD,∴四边形DEBC是菱形.
【点睛】
考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.
21、(1)4;(2)详见解析.
【解析】
(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果
(2)根据如意数的定义,求出代数式,分析取值范围即可.
【详解】
解:(1)∵a=2,b=﹣1
∴c=b2+ab﹣a+7
=1+(﹣2)﹣2+7
=4
(2)∵a=3+m,b=m﹣2
∴c=b2+ab﹣a+7
=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7
=2m2﹣4m+2
=2(m﹣1)2
∵(m﹣1)2≥0
∴“如意数”c为非负数
【点睛】
本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.
22、(1)详见解析;(2)72°;(3)
【解析】
(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
(2)用360°乘以C类别人数所占比例即可得;
(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
【详解】
解:(1)∵ 抽 查的总人数为:(人)
∴ 类人数为:(人)
补全条形统计图如下:
(2)“碳酸饮料”所在的扇形的圆心角度数为:
(3)设男生为、,女生为、、,
画树状图得:
∴恰好抽到一男一女的情况共有12 种,分别是
∴ (恰好抽到一男一女).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、120
【解析】
设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.
【详解】
解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,
由题意得,×2=,
解得:x=120,
经检验:x=120是原分式方程的解,且符合题意.
答:第一批水果每件进价为120元.
【点睛】
本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
24、(1)AA′=CC′;(2)成立,证明见解析;(3)AA′=
【解析】
(1)连接AC、A′C′,根据题意得到点A、A′、C′、C在同一条直线上,根据矩形的性质得到OA=OC,OA′=OC′,得到答案;
(2)连接AC、A′C′,证明△A′OA≌△C′OC,根据全等三角形的性质证明;
(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,根据相似多边形的性质求出B′C′,根据勾股定理计算即可.
【详解】
(1)AA′=CC′,
理由如下:连接AC、A′C′,
∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,
∵A′B′∥AB,
∴点A、A′、C′、C在同一条直线上,
由矩形的性质可知,OA=OC,OA′=OC′,
∴AA′=CC′,
故答案为AA′=CC′;
(2)(1)中的结论还成立,AA′=CC′,
理由如下:连接AC、A′C′,则AC、A′C′都经过点O,
由旋转的性质可知,∠A′OA=∠C′OC,
∵四边形ABCD和四边形A′B′C′D′都是矩形,
∴OA=OC,OA′=OC′,
在△A′OA和△C′OC中,
,
∴△A′OA≌△C′OC,
∴AA′=CC′;
(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,
∵矩形ABCD∽矩形A′B′C′D′,
∴,即,
解得,B′C′=4,
∵∠EB′C=∠B′C′C=∠E=90°,
∴四边形B′ECC′为矩形,
∴EC=B′C′=4,
在Rt△ABC中,AC==10,
在Rt△AEC中,AE==2,
∴AA′+B′E=2﹣3,又AA′=CC′=B′E,
∴AA′=.
【点睛】
本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键.
25、(1)A、B两种奖品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【解析】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;
(2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题.
【详解】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:
解得:.
答:A种奖品的单价是10元、B种奖品的单价是15元.
(2)由题意可得:W=10m+15(100﹣m)=﹣5m+1.
∵A种奖品的数量不大于B种奖品数量的3倍,∴m≤3(100﹣m),解得:m≤75
∴当m=75时,W取得最小值,此时W=﹣5×75+1=2.
答:W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【点睛】
本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
26、客车不能通过限高杆,理由见解析
【解析】
根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=,求出DF的值,即可判断.
【详解】
∵DE⊥BC,DF⊥AB,
∴∠EDF=∠ABC=14°.
在Rt△EDF中,∠DFE=90°,
∵cos∠EDF=,
∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.
∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,
∴客车不能通过限高杆.
【点睛】
考查解直角三角形,选择合适的锐角三角函数是解题的关键.
27、(1)y=﹣x2+2x+3;(2)DE+DF有最大值为;(3)①存在,P的坐标为(,)或(,);②<t<.
【解析】
(1)设抛物线解析式为y=a(x+1)(x﹣3),根据系数的关系,即可解答
(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答
(3)①过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答
②观察函数图象与△ACQ为锐角三角形时的情况,即可解答
【详解】
解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,
∴﹣2a=2,解得a=﹣1,
∴抛物线解析式为y=﹣x2+2x+3;
(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),
∵DF∥AC,
∴∠DFG=∠ACO,易知抛物线对称轴为x=1,
∴DG=x-1,DF=(x-1),
∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,
∴当x=,DE+DF有最大值为;
答图1 答图2
(3)①存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,
∵直线AC的解析式为y=3x+3,
∴直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,
∴直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(﹣1,0)代入得n=,
∴直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);
②<t<.
【点睛】
此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.
相关试卷
这是一份2023年四川省达州市宣汉县中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,羊二,直金十九两;牛二,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022年重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。
这是一份2022届青海省重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,﹣3的相反数是等内容,欢迎下载使用。