搜索
    上传资料 赚现金
    英语朗读宝

    2022届广西壮族自治区河池天峨县中考考前最后一卷数学试卷含解析

    2022届广西壮族自治区河池天峨县中考考前最后一卷数学试卷含解析第1页
    2022届广西壮族自治区河池天峨县中考考前最后一卷数学试卷含解析第2页
    2022届广西壮族自治区河池天峨县中考考前最后一卷数学试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广西壮族自治区河池天峨县中考考前最后一卷数学试卷含解析

    展开

    这是一份2022届广西壮族自治区河池天峨县中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了如图,在中,,,,则等于等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数( )

    A.40° B.50° C.60° D.90°
    2.下面调查中,适合采用全面调查的是(  )
    A.对南宁市市民进行“南宁地铁1号线线路”
    B.对你安宁市食品安全合格情况的调查
    C.对南宁市电视台《新闻在线》收视率的调查
    D.对你所在的班级同学的身高情况的调查
    3.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )

    A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE
    4.关于的分式方程解为,则常数的值为( )
    A. B. C. D.
    5.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )

    A. B.15 C. D.9
    6.下列图案中,是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    7.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为(  )
    A.1 B.2 C.﹣1 D.﹣2
    8.如图,在中,,,,则等于( )

    A. B. C. D.
    9.下列图形中,是轴对称图形但不是中心对称图形的是(  )
    A.直角梯形 B.平行四边形 C.矩形 D.正五边形
    10.如图,在△ABC中,DE∥BC,若,则等于( )

    A. B. C. D.
    11.某市从今年1月1日起调整居民用水价格,每立方米水费上涨 .小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是(  )
    A. B.
    C. D.
    12.计算4+(﹣2)2×5=(  )
    A.﹣16 B.16 C.20 D.24
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为__________.
    14.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
    15.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.

    16.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)

    17.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
    18.不等式组的解是________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
    (1)求证:四边形OCAD是平行四边形;
    (2)填空:①当∠B= 时,四边形OCAD是菱形;
    ②当∠B= 时,AD与相切.

    20.(6分)已知:如图,在四边形ABCD中,AD∥BC,点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
    (1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
    (2)在(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.

    21.(6分)我们知道中,如果,,那么当时,的面积最大为6;
    (1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
    (2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
    22.(8分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.

    23.(8分)观察下列等式:
    22﹣2×1=12+1①
    32﹣2×2=22+1②
    42﹣2×3=32+1③
    …第④个等式为   ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
    24.(10分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
    (3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.

    25.(10分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).
    请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.

    26.(12分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,
    (1)求证:△ABE≌△DCF;
    (2)试证明:以A、B、D、C为顶点的四边形是平行四边形.

    27.(12分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    分析:
    根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.
    详解:
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∵点B在直线b上,
    ∴∠1+∠ABC+∠3=180°,
    ∴∠3=180°-∠1-90°=50°,
    ∵a∥b,
    ∴∠2=∠3=50°.
    故选B.

    点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.
    2、D
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
    【详解】
    A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;
    B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;
    C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;
    D、对你所在的班级同学的身高情况的调查适宜采用普查方式;
    故选D.
    【点睛】
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    3、B
    【解析】
    先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,AD=BC,
    又∵AD=DE,
    ∴DE∥BC,且DE=BC,
    ∴四边形BCED为平行四边形,
    A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;
    B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
    C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;
    D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,
    故选B.
    【点睛】
    本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.
    4、D
    【解析】
    根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
    【详解】
    解:把x=4代入方程,得

    解得a=1.
    经检验,a=1是原方程的解
    故选D.
    点睛:此题考查了分式方程的解,分式方程注意分母不能为2.
    5、C
    【解析】
    由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.
    【详解】
    由折叠得到EB=EF,∠B=∠DFE,
    在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,
    根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,
    解得:x=5,
    ∴EF=EB=5,CE=4,
    ∵FD∥BC,
    ∴∠DFE=∠FEC,
    ∴∠FEC=∠B,
    ∴EF∥AB,
    ∴,
    则AB===,
    故选C.
    【点睛】
    此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.
    6、D
    【解析】
    分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.
    详解:A.是轴对称图形,也是中心对称图形,故此选项错误;
    B.不是轴对称图形,也不是中心对称图形,故此选项错误;
    C.不是轴对称图形,是中心对称图形,故此选项错误;
    D.是轴对称图形,不是中心对称图形,故此选项正确.
    故选D.
    点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
    中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
    7、B
    【解析】
    根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.
    【详解】
    把x=2代入得,4-6+k=0,
    解得k=2.
    故答案为:B.
    【点睛】
    本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.
    8、A
    【解析】
    分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.
    详解:在Rt△ABC中,∵AB=10、AC=8,
    ∴BC=,
    ∴sinA=.
    故选:A.
    点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.
    9、D
    【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.
    详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;
    B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
    C.矩形是轴对称图形,也是中心对称图形,故此选项错误;
    D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.
    故选D.
    点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
    10、C
    【解析】
    试题解析::∵DE∥BC,
    ∴,
    故选C.
    考点:平行线分线段成比例.
    11、A
    【解析】
    解:设去年居民用水价格为x元/cm1,根据题意列方程:
    ,故选A.
    12、D
    【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.
    详解:4+(﹣2)2×5
    =4+4×5
    =4+20
    =24,
    故选:D.
    点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    根据方程的系数结合根的判别式即可得出△=m2﹣4m=0,将其代入2m2﹣8m+1中即可得出结论.
    【详解】
    ∵关于x的方程x2﹣mx+m=0有两个相等实数根,
    ∴△=(﹣m)2﹣4m=m2﹣4m=0,
    ∴2m2﹣8m+1=2(m2﹣4m)+1=1.
    故答案为1.
    【点睛】
    本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.
    14、或
    【解析】
    分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
    【详解】
    解:当0°<x°≤90°时,如图所示:连接OC,

    由圆周角定理得,∠BOC=2∠A=2x°,
    ∴∠DOC=180°-2x°,
    ∴∠OBC所对的劣弧长=,
    当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
    故答案为:或.
    【点睛】
    本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.
    15、10
    【解析】
    首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.
    【详解】
    如图,

    由题意可得:∠APE=∠CPE,
    ∴∠APB=∠CPD,
    ∵AB⊥BD,CD⊥BD,
    ∴∠ABP=∠CDP=90°,
    ∴△ABP∽△CDP,
    ∴=,
    ∵AB=2米,BP=3米,PD=15米,
    ∴=,
    解得:CD=10米.
    故答案为10.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.
    16、π.
    【解析】
    如图,连接OE,利用切线的性质得OD=3,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD-S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.
    【详解】
    连接OE,如图,

    ∵以AD为直径的半圆O与BC相切于点E,
    ∴OD=CD=3,OE⊥BC,
    ∴四边形OECD为正方形,
    ∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=32﹣,
    ∴阴影部分的面积,
    故答案为π.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.
    17、
    【解析】
    根据随机事件概率大小的求法,找准两点:
    ①符合条件的情况数目;
    ②全部情况的总数.
    二者的比值就是其发生的概率的大小.
    【详解】
    解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
    ∴从中任意摸出一个球,则摸出白球的概率是.
    故答案为:.
    【点睛】
    本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
    18、x>4
    【解析】
    分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.
    【详解】
    由①得:x>2;
    由②得 :x>4;
    ∴此不等式组的解集为x>4;
    故答案为x>4.
    【点睛】
    考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)① 30°,② 45°
    【解析】
    试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;
    (2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得
    ②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得
    试题解析:(方法不唯一)
    (1)∵OA=OC,AD=OC,
    ∴OA=AD,
    ∴∠OAC=∠OCA,∠AOD=∠ADO,
    ∵OD∥AC,
    ∴∠OAC=∠AOD,
    ∴∠OAC=∠OCA=∠AOD=∠ADO,
    ∴∠AOC=∠OAD,
    ∴OC∥AD,
    ∴四边形OCAD是平行四边形;
    (2)①∵四边形OCAD是菱形,
    ∴OC=AC,
    又∵OC=OA,
    ∴OC=OA=AC,


    故答案为
    ②∵AD与相切,

    ∵AD∥OC,


    故答案为
    20、(1)作图见解析;(2)⊙O的半径为.
    【解析】
    (1)作出相应的图形,如图所示;
    (2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
    【详解】
    解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).

    (2)∵AD∥BC,
    ∴∠DAB+∠CBA=180°.
    ∵AE与BE分别为∠DAB与∠CBA的平分线,
    ∴∠EAB+∠EBA=90°,
    ∴∠AEB=90°.
    ∵AB为⊙O的直径,点F在⊙O上,
    ∴∠AFB=90°,∴∠FAG+∠FGA=90°.
    ∵AE平分∠DAB,
    ∴∠FAG=∠EAB,∴∠AGF=∠ABE,
    ∴sin∠ABE=sin∠AGF==.
    ∵AE=4,∴AB=5,
    ∴⊙O的半径为.
    【点睛】
    此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.
    21、 (1)当,时有最大值1;(2)当时,面积有最大值32.
    【解析】
    (1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
    (2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
    【详解】
    (1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
    最大面积为×6×(16-6)=1.
    故当,时有最大值1;
    (2)当,时有最大值,
    设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,








    ∴抛物线开口向下
    ∴当 时,面积有最大值32.
    【点睛】
    本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
    22、38+12
    【解析】
    根据∠ABC=90°,AE=CE,EB=12,求出AC,根据Rt△ABC中,∠CAB=30°,BC=12,求出根据DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案.
    【详解】
    ∵∠ABC=90°,AE=CE,EB=12,
    ∴EB=AE=CE=12,
    ∴AC=AE+CE=24,
    ∵在Rt△ABC中,∠CAB=30°,
    ∴BC=12,
    ∵DE⊥AC,AE=CE,
    ∴AD=DC,
    在Rt△ADE中,由勾股定理得
    ∴DC=13,
    ∴四边形ABCD的周长=AB+BC+CD+DA=
    【点睛】
    此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长.
    23、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
    【解析】
    (1)根据①②③的规律即可得出第④个等式;
    (2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
    【详解】
    (1)∵22﹣2×1=12+1①
    32﹣2×2=22+1②
    42﹣2×3=32+1③
    ∴第④个等式为52﹣2×4=42+1,
    故答案为:52﹣2×4=42+1,
    (2)第n个等式为(n+1)2﹣2n=n2+1.
    (n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
    【点睛】
    本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
    24、(1);(2)点P的坐标为 ;(3).
    【解析】
    (1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
    (2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
    (3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
    【详解】
    (1)若△ABC为直角三角形
    ∴△AOC∽△COB
    ∴OC2=AO•OB
    当y=0时,0=x2-x-n
    由一元二次方程根与系数关系
    -OA•OB=OC2
    n2==−2n
    解得n=0(舍去)或n=2
    ∴抛物线解析式为y=;
    (2)由(1)当=0时
    解得x1=-1,x2=4
    ∴OA=1,OB=4
    ∴B(4,0),C(0,-2)
    ∵抛物线对称轴为直线x=-=−
    ∴设点Q坐标为(,b)
    由平行四边形性质可知
    当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
    代入y=x2-x-2
    解得b=,则P点坐标为(,)
    当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
    代入y=x2-x-2
    解得b=,则P坐标为(-,)
    综上点P坐标为(,),(-,);
    (3)设点D坐标为(a,b)
    ∵AE:ED=1:4
    则OE=b,OA=a
    ∵AD∥AB
    ∴△AEO∽△BCO
    ∵OC=n

    ∴OB=
    由一元二次方程根与系数关系得,
    ∴b=a2
    将点A(-a,0),D(a,a2)代入y=x2-x-n

    解得a=6或a=0(舍去)
    则n= .
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
    25、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.
    【解析】
    (1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;
    (2)根据条形统计图求出捐4本的人数为,再画出图形即可;
    (3)用360°乘以所捐图书是6本的人数所占比例可得;
    (4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.
    【详解】
    (1)∵捐 2 本的人数是 15 人,占 30%,
    ∴该班学生人数为 15÷30%=50 人;
    (2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;
    补图如下;

    (3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆
    心角为 360°×=36°.
    (4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,
    ∴全校 2000 名学生共捐 2000×=6280(本),
    答:全校 2000 名学生共捐 6280 册书.
    【点睛】
    本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.
    26、(1)证明见解析;(2)证明见解析
    【解析】
    (1)根据平行线性质求出∠B=∠C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;
    (2)借助(1)中结论△ABE≌△DCF,可证出AE平行且等于DF,即可证出结论.
    证明:(1)如图,∵AB∥CD,
    ∴∠B=∠C.
    ∵BF=CE
    ∴BE=CF
    ∵在△ABE与△DCF中,

    ∴△ABE≌△DCF(SAS);
    (2)如图,连接AF、DE.

    由(1)知,△ABE≌△DCF,
    ∴AE=DF,∠AEB=∠DFC,
    ∴∠AEF=∠DFE,
    ∴AE∥DF,
    ∴以A、F、D、E为顶点的四边形是平行四边形.
    27、(1);y2=2250x;
    (2)甲、乙两个商场的收费相同时,所买商品为6件;
    (3)所买商品为5件时,应选择乙商场更优惠.
    【解析】
    试题分析:(1)由两家商场的优惠方案分别列式整理即可;
    (2)由收费相同,列出方程求解即可;
    (3)由函数解析式分别求出x=5时的函数值,即可得解
    试题解析:(1)当x=1时,y1=3000;
    当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.
    ∴;
    y2=3000x(1﹣25%)=2250x,
    ∴y2=2250x;
    (2)当甲、乙两个商场的收费相同时,2100x+1=2250x,
    解得x=6,
    答:甲、乙两个商场的收费相同时,所买商品为6件;
    (3)x=5时,y1=2100x+1=2100×5+1=11400,
    y2=2250x=2250×5=11250,
    ∵11400>11250,
    ∴所买商品为5件时,应选择乙商场更优惠.
    考点:一次函数的应用

    相关试卷

    2022年林芝中考考前最后一卷数学试卷含解析:

    这是一份2022年林芝中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。

    2022年广西壮族自治区贵港市覃塘区达标名校中考考前最后一卷数学试卷含解析:

    这是一份2022年广西壮族自治区贵港市覃塘区达标名校中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了已知,二次函数y=ax1+bx+c等内容,欢迎下载使用。

    2022届广西壮族自治区河池天峨县市级名校中考数学最后冲刺模拟试卷含解析:

    这是一份2022届广西壮族自治区河池天峨县市级名校中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了如图所示,,结论等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map