![2022届广东深圳市莲花中学中考数学模拟预测试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13064301/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届广东深圳市莲花中学中考数学模拟预测试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13064301/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届广东深圳市莲花中学中考数学模拟预测试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13064301/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届广东深圳市莲花中学中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )
A.2 B.-2 C.±2 D.-
2.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为( )
A. B. C. D.
3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
4.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米.
A.25 B. C. D.
5.如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )
A. B. C. D.
6.已知关于x的一元二次方程有两个相等的实根,则k的值为( )
A. B. C.2或3 D.或
7.下列二次根式中,是最简二次根式的是( )
A. B. C. D.
8.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是( )
A.60° B.35° C.30.5° D.30°
9.下列四个式子中,正确的是( )
A. =±9 B.﹣ =6 C.()2=5 D.=4
10.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:2a4﹣4a2+2=_____.
12.不等式组的解集为____.
13.已知是整数,则正整数n的最小值为___
14.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.
15.计算:____________
16.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
17.若不等式(a﹣3)x>1的解集为,则a的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.
(1)a= ,b= ;
(2)确定y2与x之间的函数关系式:
(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?
19.(5分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
此次抽样调查中,共调查了 名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.
20.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对冬奥会了解程度的统计表
对冬奥会的了解程度
百分比
A非常了解
10%
B比较了解
15%
C基本了解
35%
D不了解
n%
(1)n= ;
(2)扇形统计图中,D部分扇形所对应的圆心角是 ;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
21.(10分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
22.(10分)观察下列算式:
① 1 × 3 - 22 =" 3" - 4 = -1
② 2 × 4 - 32 =" 8" - 9 = -1
③3 × 5 - 42 =" 15" - 16 = -1
④
……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
23.(12分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.
(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;
(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;
(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.
24.(14分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
求m、n的值;求直线AC的解析式.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.
【详解】
由题意得:m2-3=1,且m+1<0,
解得:m=-2,
故选:B.
【点睛】
此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.
2、B
【解析】
连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.
【详解】
连接OO′,作O′H⊥OA于H,
在Rt△AOB中,∵tan∠BAO==,
∴∠BAO=30°,
由翻折可知,∠BAO′=30°,
∴∠OAO′=60°,
∵AO=AO′,
∴△AOO′是等边三角形,
∵O′H⊥OA,
∴OH=,
∴OH′=OH=,
∴O′(,),
故选B.
【点睛】
本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.
3、C
【解析】
试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
【详解】
.故选C.
解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
4、B
【解析】
解:过点B作BE⊥AD于E.
设BE=x.
∵∠BCD=60°,tan∠BCE,
,
在直角△ABE中,AE=,AC=50米,
则,
解得
即小岛B到公路l的距离为,
故选B.
5、B
【解析】
先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.
【详解】
∵BD平分∠ABC,
∴∠ABD=∠EBD,
∵AE⊥BD,
∴∠ADB=∠EDB=90°,
又∵BD=BD,
∴△ABD≌△EBD,
∴AD=ED,
∵,的面积为1,
∴S△AEC=S△ABC=,
又∵AD=ED,
∴S△CDE= S△AEC=,
故选B.
【点睛】
本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.
6、A
【解析】
根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.
【详解】
∵方程有两个相等的实根,
∴△=k2-4×2×3=k2-24=0,
解得:k=.
故选A.
【点睛】
本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.
7、B
【解析】
根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.
【详解】
A、 =4,不符合题意;
B、是最简二次根式,符合题意;
C、=,不符合题意;
D、=,不符合题意;
故选B.
【点睛】
本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
8、D
【解析】
根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
【详解】
连接OB,
∵点B是弧的中点,
∴∠AOB= ∠AOC=60°,
由圆周角定理得,∠D= ∠AOB=30°,
故选D.
【点睛】
此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
9、D
【解析】
A、表示81的算术平方根;B、先算-6的平方,然后再求−的值;C、利用完全平方公式计算即可;D、=.
【详解】
A、=9,故A错误;
B、-=−=-6,故B错误;
C、()2=2+2+3=5+2,故C错误;
D、==4,故D正确.
故选D.
【点睛】
本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.
10、B
【解析】
根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.
【详解】
(1)当0≤x≤2时,
BQ=2x
当2≤x≤4时,如下图
由上可知
故选:B.
【点睛】
本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.
二、填空题(共7小题,每小题3分,满分21分)
11、1(a+1)1(a﹣1)1.
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,
故答案为:1(a+1)1(a﹣1)1
【点睛】
本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.
12、x>1
【解析】
分别解出两不等式的解集再求其公共解.
【详解】
由①得:x>1
由②得:x>
∴不等式组的解集是x>1.
【点睛】
求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.
13、1
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.
【点睛】
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
14、37
【解析】
根据题意列出一元一次方程即可求解.
【详解】
解:设十位上的数字为a,则个位上的数为(a+4),依题意得:
a+a+4=10,
解得:a=3,
∴这个两位数为:37
【点睛】
本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.
15、y
【解析】
根据幂的乘方和同底数幂相除的法则即可解答.
【详解】
【点睛】
本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.
16、1.
【解析】
直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
【详解】
如图所示:
∵坡度i=1:0.75,
∴AC:BC=1:0.75=4:3,
∴设AC=4x,则BC=3x,
∴AB==5x,
∵AB=20m,
∴5x=20,
解得:x=4,
故3x=1,
故这个物体在水平方向上前进了1m.
故答案为:1.
【点睛】
此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
17、.
【解析】
∵(a−3)x>1的解集为x<,
∴不等式两边同时除以(a−3)时不等号的方向改变,
∴a−3<0,
∴a<3.
故答案为a<3.
点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.
三、解答题(共7小题,满分69分)
18、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.
【解析】
(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;
(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;
(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.
【详解】
(1)由y1图像上点(10,480),得到10人的费用为480元,
∴a=;
由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,
∴b=;
(2)
0≤x≤10时,设y2=k2x,把(10, 800)代入得10k2=800,
解得k2=80,
∴y2=80x,
x>10,设y2=kx+b,把(10, 800)和(20,1440)代入得
解得
∴y2=64x+160
∴
(3)设B团有n人,则A团的人数为(50-n)
当0≤n≤10时80n+48(50-n)=3040,
解得n=20(不符合题意舍去)
当n>10时,
解得n=30.
则50-n=20人,
则A团有20人,B团有30人.
【点睛】
此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.
19、(1)200,(2)图见试题解析 (3)540
【解析】
试题分析:(1)根据A级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;
(2)根据总人数求出C级的人数,然后补全条形统计图即可;
(3)1减去A、B两级所占的百分比乘以360°即可得出结论.
试题解析::(1)调查的学生人数为:=200名;
(2)C级学生人数为:200-50-120=30名,
补全统计图如图;
(3)学习态度达标的人数为:360×[1-(25%+60%]=54°.
答:求出图②中C级所占的圆心角的度数为54°.
考点:条形统计图和扇形统计图的综合运用
20、 (1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.
【解析】
(1)根据统计图可以求出这次调查的n的值;
(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;
(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;
(4)根据题意可以写出树状图,从而可以解答本题.
【详解】
解:(1)n%=1﹣10%﹣15%﹣35%=40%,
故答案为40;
(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,
故答案为144°;
(3)调查的结果为D等级的人数为:400×40%=160,
故补全的条形统计图如右图所示,
(4)由题意可得,树状图如右图所示,
P(奇数)
P(偶数)
故游戏规则不公平.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21、塔杆CH的高为42米
【解析】
作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.
【详解】
解:如图,作BE⊥DH于点E,
则GH=BE、BG=EH=4,
设AH=x,则BE=GH=GA+AH=23+x,
在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,
∴CE=CH﹣EH=tan55°•x﹣4,
∵∠DBE=45°,
∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,
解得:x≈30,
∴CH=tan55°•x=1.4×30=42,
答:塔杆CH的高为42米.
【点睛】
本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
22、⑴;
⑵答案不唯一.如;
⑶
.
【解析】
(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;
(2)将(1)中,发现的规律,由特殊到一般,得出结论;
(3)一定成立.利用整式的混合运算方法加以证明.
23、(1)25π;(2)点B的坐标为或;(3)m≤-5或m≥2
【解析】
(1)根据勾股定理,可得AB的长,根据圆的面积公式,可得答案;
(2)根据确定圆,可得l与⊙A相切,根据圆的面积,可得AB的长为3,根据等腰直角三角形的性质,可得,可得答案;
(3)根据圆心与直线垂直时圆心到直线的距离最短,根据确定圆的面积,可得PB的长,再根据30°的直角边等于斜边的一半,可得CA的长.
【详解】
(1)(1)∵A的坐标为(−1,0),B的坐标为(3,3),
∴AB==5,
根据题意得点A,B的“确定圆”半径为5,
∴S圆=π×52=25π.
故答案为25π;
(2)∵直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积
为9π,
∴⊙A的半径AB=3且直线y=x+b与⊙A相切于点B,如图,
∴AB⊥CD,∠DCA=45°.
,
①当b>0时,则点B在第二象限.
过点B作BE⊥x轴于点E,
∵在Rt△BEA中,∠BAE=45°,AB=3,
∴.
∴.
②当b<0时,则点B'在第四象限.
同理可得.
综上所述,点B的坐标为或.
(3)如图2,
,
直线当y=0时,x=3,即C(3,0).
∵tan∠BCP=,
∴∠BCP=30°,
∴PC=2PB.
P到直线的距离最小是PB=4,
∴PC=1.
3-1=-5,P1(-5,0),
3+1=2,P(2,0),
当m≤-5或m≥2时,PD的距离大于或等于4,点A,B的“确定圆”的面积都不小于9π.
点A,B的“确定圆”的面积都不小于9π,m的范围是m≤-5或m≥2.
【点睛】
本题考查了一次函数综合题,解(1)的关键是利用勾股定理得出AB的长;解(2)的关键是等腰直角三角形的性质得出;解(3)的关键是利用30°的直角边等于斜边的一半得出PC=2PB.
24、(1)m=-1,n=-1;(2)y=-x+
【解析】
(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;
(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.
【详解】
(1)∵直线与双曲线相交于A(-1,a)、B两点,
∴B点横坐标为1,即C(1,0)
∵△AOC的面积为1,
∴A(-1,1)
将A(-1,1)代入,可得m=-1,n=-1;
(2)设直线AC的解析式为y=kx+b
∵y=kx+b经过点A(-1,1)、C(1,0)
∴解得k=-,b=.
∴直线AC的解析式为y=-x+.
【点睛】
本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.
广东省深圳市福田区红岭中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份广东省深圳市福田区红岭中学2021-2022学年中考数学模拟预测试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。
广东深圳市莲花中学2022年中考数学仿真试卷含解析: 这是一份广东深圳市莲花中学2022年中考数学仿真试卷含解析,共16页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022届广东省深圳市福田区八校中考数学模拟预测试卷含解析: 这是一份2022届广东省深圳市福田区八校中考数学模拟预测试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列各数是不等式组的解是,下列计算正确的是等内容,欢迎下载使用。