终身会员
搜索
    上传资料 赚现金
    2022届广东省广州市白云区达标名校中考联考数学试题含解析
    立即下载
    加入资料篮
    2022届广东省广州市白云区达标名校中考联考数学试题含解析01
    2022届广东省广州市白云区达标名校中考联考数学试题含解析02
    2022届广东省广州市白云区达标名校中考联考数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省广州市白云区达标名校中考联考数学试题含解析

    展开
    这是一份2022届广东省广州市白云区达标名校中考联考数学试题含解析,共24页。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.方程组的解x、y满足不等式2x﹣y>1,则a的取值范围为(  )
    A.a≥ B.a> C.a≤ D.a>
    2.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(  )

    A. B. C. D.
    3.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为(  )

    A.1+ B.1+
    C.2sin20°+ D.
    4.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是(  )

    A. B. C. D.
    5.下列函数中,当x>0时,y值随x值增大而减小的是(  )
    A.y=x2 B.y=x﹣1 C. D.
    6.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )

    A.60° B.50° C.40° D.30°
    7.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
    A.2 B.-2 C.4 D.-4
    8.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )

    A.62° B.56° C.60° D.28°
    9.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为(  )
    A.0.637×10﹣5 B.6.37×10﹣6 C.63.7×10﹣7 D.6.37×10﹣7
    10.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )

    A.8 B. C. D.
    11.下列命题正确的是(  )
    A.对角线相等的四边形是平行四边形
    B.对角线相等的四边形是矩形
    C.对角线互相垂直的平行四边形是菱形
    D.对角线互相垂直且相等的四边形是正方形
    12.已知函数的图象与x轴有交点.则的取值范围是( )
    A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.
    14.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_____.

    15.分解因式:a3b+2a2b2+ab3=_____.
    16.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.
    17.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.

    18.观察下列一组数,,,,,…探究规律,第n个数是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.
    (1)如图1,当AB=AC,且sin∠BEF=时,求的值;
    (2)如图2,当tan∠ABC=时,过D作DH⊥AE于H,求的值;
    (3)如图3,连AD交BC于G,当时,求矩形BCDE的面积

    20.(6分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
    21.(6分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
    超市:购物金额打9折后,若超过2000元再优惠300元;
    超市:购物金额打8折.
    某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
    22.(8分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).
    ①求此抛物线的解析式;
    ②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.
    23.(8分)某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象.

    (1)观察图,其中 , ;
    (2)求第2趟电瓶车距乙地的路程与的函数关系式;
    (3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.
    24.(10分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.

    在平面直角坐标系xOy中,⊙O的半径为1.
    (1)如图2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是   ;
    (2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.
    ①∠MDN的大小为   ;
    ②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;
    ③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.
    25.(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
    26.(12分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.
    27.(12分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
    (1)求抛物线y=ax2+bx+2的函数表达式;
    (2)求直线BC的函数表达式;
    (3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
    ①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
    ②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    方程组两方程相加表示出2x﹣y,代入已知不等式即可求出a的范围.
    【详解】

    ①+②得:
    解得:
    故选:B.
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知
    数的值.
    2、B
    【解析】
    试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积==10π .故选B.
    3、A
    【解析】
    连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.
    【详解】
    连接OT、OC,

    ∵PT切⊙O于点T,
    ∴∠OTP=90°,
    ∵∠P=20°,
    ∴∠POT=70°,
    ∵M是OP的中点,
    ∴TM=OM=PM,
    ∴∠MTO=∠POT=70°,
    ∵OT=OC,
    ∴∠MTO=∠OCT=70°,
    ∴∠OCT=180°-2×70°=40°,
    ∴∠COM=30°,
    作CH⊥AP,垂足为H,则CH=OC=1,
    S阴影=S△AOC+S扇形OCB=OA•CH+=1+,
    故选A.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.
    4、A
    【解析】
    一一对应即可.
    【详解】
    最左边有一个,中间有两个,最右边有三个,所以选A.
    【点睛】
    理解立体几何的概念是解题的关键.
    5、D
    【解析】
    A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误
    B、k>0,y随x增大而增大,故此选项错误
    C、B、k>0,y随x增大而增大,故此选项错误
    D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确
    6、C
    【解析】
    先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵∠1=180°﹣100°=80°,a∥c,
    ∴∠α=180°﹣80°﹣60°=40°.
    故选:C.

    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
    7、C
    【解析】
    对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
    即16-4k=0,解得:k=4.
    考点:一元二次方程根的判别式
    8、A
    【解析】
    连接OB.
    在△OAB中,OA=OB(⊙O的半径),
    ∴∠OAB=∠OBA(等边对等角);
    又∵∠OAB=28°,
    ∴∠OBA=28°;
    ∴∠AOB=180°-2×28°=124°;
    而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
    ∴∠C=62°;
    故选A
    9、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000637的小数点向右移动6位得到6.37
    所以0.00000637用科学记数法表示为6.37×10﹣6,
    故选B.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    10、D
    【解析】
    根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.
    【详解】
    ∵正方形ABCD的面积为16,正方形BPQR面积为25,
    ∴正方形ABCD的边长为4,正方形BPQR的边长为5,
    在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,
    ∵四边形ABCD是正方形,
    ∴∠A=∠D=∠BRQ=90°,
    ∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,
    ∴∠ABR=∠DRS,
    ∵∠A=∠D,
    ∴△ABR∽△DRS,
    ∴,
    ∴,
    ∴DS=,
    ∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,
    故选:D.
    【点睛】
    本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.
    11、C
    【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
    详解:对角线互相平分的四边形是平行四边形,A错误;
    对角线相等的平行四边形是矩形,B错误;
    对角线互相垂直的平行四边形是菱形,C正确;
    对角线互相垂直且相等的平行四边形是正方形;
    故选:C.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    12、B
    【解析】
    试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
    考点:函数图像与x轴交点的特点.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3.86×108
    【解析】
    根据科学记数法的表示(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数)形式可得:
    3.86亿=386000000=3.86×108.
    故答案是:3.86×108.
    14、2
    【解析】
    试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出
    考点:不等式的性质
    点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键
    15、ab(a+b)1.
    【解析】
    a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.
    故答案为ab(a+b)1.
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.
    16、
    【解析】
    试题解析:∵一个布袋里装有2个红球和5个白球,
    ∴摸出一个球摸到红球的概率为:.
    考点:概率公式.
    17、11π﹣.
    【解析】
    阴影部分的面积=扇形ECF的面积-△ACD的面积-△OCM的面积-扇形AOM的面积-弓形AN的面积.
    【详解】
    解:连接OM,ON.

    ∴OM=3,OC=6,


    ∴扇形ECF的面积
    △ACD的面积
    扇形AOM的面积
    弓形AN的面积
    △OCM的面积
    ∴阴影部分的面积=扇形ECF的面积−△ACD的面积−△OCM的面积−扇形AOM的面积−弓形AN的面积
    故答案为.
    【点睛】
    考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.
    18、
    【解析】
    根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n个数分子的规律是n,分母的规律是2n+1,进而得出这一组数的第n个数的值.
    【详解】
    解:因为分子的规律是连续的正整数,分母的规律是2n+1,
    所以第n个数就应该是:,
    故答案为.
    【点睛】
    此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n表示出来.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1) ;(2)80;(3)100.
    【解析】
    (1)过A作AK⊥BC于K,根据sin∠BEF=得出,设FK=3a,AK=5a,可求得BF=a,故;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.
    【详解】
    解:(1)过A作AK⊥BC于K,
    ∵sin∠BEF=,sin∠FAK=,
    ∴,
    设FK=3a,AK=5a,
    ∴AK=4a,
    ∵AB=AC,∠BAC=90°,
    ∴BK=CK=4a,
    ∴BF=a,
    又∵CF=7a,

    (2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,
    ∵∠AGE=∠DHE=90°,
    ∴△EGA∽△EHD,
    ∴,
    ∴,其中EG=BK,
    ∵BC=10,tan∠ABC=,
    cos∠ABC=,
    ∴BA=BC· cos∠ABC=,
    BK= BA·cos∠ABC=
    ∴EG=8,
    另一方面:ED=BC=10,
    ∴EH·EA=80
    (3)延长AB、ED交于K,延长AC、ED交于T,
    ∵BC∥KT, ,
    ∴,同理:
    ∵FG2= BF·CG ∴,
    ∴ED2= KE·DT ∴ ,
    又∵△KEB∽△CDT,∴,
    ∴KE·DT =BE2, ∴BE2=ED2
    ∴ BE=ED


    【点睛】
    此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.
    20、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.
    【解析】
    (1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;
    (2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;
    (3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.
    【详解】
    (1)设商家一次购买这种产品x件时,销售单价恰好为2800元.
    由题意得:3200﹣5(x﹣10)=2800,解得:x=1.
    答:商家一次购买这种产品1件时,销售单价恰好为2800元;
    (2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:
    当0≤x≤10时,y=(3200﹣2500)x=700x,
    当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,
    当x>1时,y=(2800﹣2500)•x=300x;
    (3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,
    函数y=700x,y=300x均是y随x增大而增大,
    而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.
    由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,
    最低价为3200﹣5•(75﹣10)=2875元,
    答:公司应将最低销售单价调整为2875元.
    【点睛】
    本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
    21、(1)这种篮球的标价为每个50元;(2)见解析
    【解析】
    (1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
    (2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
    【详解】
    (1)设这种篮球的标价为每个x元,
    依题意,得,
    解得:x=50,
    经检验:x=50是原方程的解,且符合题意,
    答:这种篮球的标价为每个50元;
    (2)购买100个篮球,最少的费用为3850元,
    单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
    在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
    单独在B超市购买:100×50×0.8=4000元,
    在A、B两个超市共买100个,
    根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
    综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    22、(1)①;②n≤1;(2)ac≤1,见解析.
    【解析】
    (1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;
    ②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;
    (2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1. ≥c,b≥2ac,ac+1≥2ac,ac≥1;
    【详解】
    解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,
    △=(b+1)2=1,b=﹣1,
    平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),
    ∴4a﹣2b=1,
    ∴a=﹣,b=﹣1,
    原抛物线:y=﹣x2+x,
    ②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),
    ∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.
    由得:x2+2n=1有解,所以n≤1.
    (2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),
    其解析式为:y=ax2﹣bx+c过点(c,1),
    ∴ac2﹣bc+c=1 (c>1),
    ∴ac﹣b+1=1,b=ac+1,
    且当x=1时,y=c,
    对称轴:x=,抛物线开口向上,画草图如右所示.
    由题知,当1<x<c时,y>1.
    ∴≥c,b≥2ac,
    ∴ac+1≥2ac,ac≤1;

    【点睛】
    本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.
    23、(1)0.8;2.1;(2);(2)图像见解析,2
    【解析】
    (1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b的值;
    (2)先求出电瓶车的速度,再根据路程=两地间距-速度×时间即可得出答案;
    (2)结合的图象即可画出的图象,观察图象即可得出答案.
    【详解】
    解:(1),

    故答案为:0.8;2.1.
    (2)根据题意得:
    电瓶车的速度为
    ∴.
    (2)画出函数图象,如图所示.
    观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过.
    故答案为:2.

    【点睛】
    本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键.
    24、(1)C;(2)①60;②E(,1);③点F的横坐标x的取值范围≤xF≤.
    【解析】
    (1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;
    (2)①如图3-1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;
    ②如图3-2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;
    ③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;
    【详解】
    (1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,
    故答案为C.
    (2)①如图3-1中,作NH⊥x轴于H.

    ∵N(,-),
    ∴tan∠NOH=,
    ∴∠NOH=30°,
    ∠MON=90°+30°=120°,
    ∵点D是线段MN关于点O的关联点,
    ∴∠MDN+∠MON=180°,
    ∴∠MDN=60°.
    故答案为60°.
    ②如图3-2中,结论:△MNE是等边三角形.

    理由:作EK⊥x轴于K.
    ∵E(,1),
    ∴tan∠EOK=,
    ∴∠EOK=30°,
    ∴∠MOE=60°,
    ∵∠MON+∠MEN=180°,
    ∴M、O、N、E四点共圆,
    ∴∠MNE=∠MOE=60°,
    ∵∠MEN=60°,
    ∴∠MEN=∠MNE=∠NME=60°,
    ∴△MNE是等边三角形.
    ③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,

    易知E(,1),
    ∴点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),
    观察图象可知满足条件的点F的横坐标x的取值范围≤xF≤.
    【点睛】
    此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.
    25、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.
    【解析】
    (1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;
    (2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;
    (3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可.
    【详解】
    (1)设甲、乙两种型号设备每台的价格分别为万元和万元,
    由题意得:,
    解得:,
    则甲,乙两种型号设备每台的价格分别为12万元和10万元;
    (2)设购买甲型设备台,乙型设备台,
    则,
    ∴,
    ∵取非负整数,
    ∴,
    ∴有6种购买方案;
    (3)由题意:,
    ∴,
    ∴为4或5,
    当时,购买资金为:(万元),
    当时,购买资金为:(万元),
    则最省钱的购买方案是选购甲型设备4台,乙型设备6台.
    【点睛】
    本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.
    26、足球单价是60元,篮球单价是90元.
    【解析】
    设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.
    【详解】
    解:足球的单价分别为x元,篮球单价是1.5x元,
    可得:,
    解得:x=60,
    经检验x=60是原方程的解,且符合题意,
    1.5x=1.5×60=90,
    答:足球单价是60元,篮球单价是90元.
    【点睛】
    本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.
    27、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【解析】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
    (3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
    ②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
    【详解】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
    解得:a=﹣,b=,
    故函数的表达式为y=﹣x2+x+2;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
    解得:k=2,b=2,
    故:直线BC的函数表达式为y=2x+2,
    (3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
    则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
    ∴AE∥BC,而EP⊥BC,∴BP⊥AE
    而BP=AE,∴线段BP与线段AE的关系是相互垂直;
    ②设点P的横坐标为m,
    当P点在线段BC上时,
    P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
    直线MM′⊥BC,∴kMM′=﹣,
    直线MM′的方程为:y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    由题意得:PM′=PM=2m,
    PM′2=42+m2=(2m)2,此式不成立,
    或PM′2=m2+(2m+2)2=(2m)2,
    解得:m=﹣4±2,
    故点P的坐标为(﹣4±2,﹣8±4);
    当P点在线段BE上时,
    点P坐标为(m,﹣4),点M坐标为(m,2),
    则PM=6,
    直线MM′的方程不变,为y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    PM′2=m2+(6+m)2=(2m)2,
    解得:m=0,或﹣;
    或PM′2=42+42=(6)2,无解;
    故点P的坐标为(0,﹣4)或(﹣,﹣4);
    综上所述:
    点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【点睛】
    主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.

    相关试卷

    广东省广州市名校联盟重点名校2021-2022学年中考联考数学试题含解析: 这是一份广东省广州市名校联盟重点名校2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    广东省梅州市梅县达标名校2021-2022学年中考联考数学试题含解析: 这是一份广东省梅州市梅县达标名校2021-2022学年中考联考数学试题含解析,共17页。试卷主要包含了二次函数y=ax2+bx+c,已知二次函数y=3,sin45°的值等于,民族图案是数学文化中的一块瑰宝等内容,欢迎下载使用。

    广州市白云区重点名校2022年中考四模数学试题含解析: 这是一份广州市白云区重点名校2022年中考四模数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,点A等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map