2022届江苏省南京市鼓楼区中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,,且.、是上两点,,.若,,,则的长为( )
A. B. C. D.
2.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )
A.4 B.4 C.6 D.4
3.一、单选题
如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )
A. B. C. D.
4.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
5.如图,与∠1是内错角的是( )
A.∠2 B.∠3
C.∠4 D.∠5
6.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )
A. B. C. D.
7.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为( )
A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108
8.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是( )
A.4 B.6 C.8 D.10
9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1 B.2 C.3 D.4
10.下列运算正确的是( )
A.a2•a3=a6 B.()﹣1=﹣2 C. =±4 D.|﹣6|=6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若正六边形的边长为2,则此正六边形的边心距为______.
12.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.
13.若方程 x2+(m2﹣1)x+1+m=0的两根互为相反数,则 m=______
14.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.
15.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.
16.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.
三、解答题(共8题,共72分)
17.(8分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).
(1)求点B的坐标;
(2)平移后的抛物线可以表示为 (用含n的式子表示);
(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.
①请写出a与n的函数关系式.
②如图2,连接AC,CD,若∠ACD=90°,求a的值.
18.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.
19.(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.
(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)
(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.
20.(8分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
()请补全上面的条形图.
()所抽查学生“诵读经典”时间的中位数落在__________级.
()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?
21.(8分)如图,已知△ABC.
(1)请用直尺和圆规作出∠A的平分线AD(不要求写作法,但要保留作图痕迹);
(2)在(1)的条件下,若AB=AC,∠B=70°,求∠BAD的度数.
22.(10分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
(I)本次随机抽样调查的学生人数为 ,图①中的m的值为 ;
(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
23.(12分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.
24.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
分析:
详解:如图,
∵AB⊥CD,CE⊥AD,
∴∠1=∠2,
又∵∠3=∠4,
∴180°-∠1-∠4=180°-∠2-∠3,
即∠A=∠C.
∵BF⊥AD,
∴∠CED=∠BFD=90°,
∵AB=CD,
∴△ABF≌△CDE,
∴AF=CE=a,ED=BF=b,
又∵EF=c,
∴AD=a+b-c.
故选:D.
点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
2、B
【解析】
由已知条件可得,可得出,可求出AC的长.
【详解】
解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,
故选B.
【点睛】
本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.
3、D
【解析】
试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.
考点:简单几何体的三视图.
4、D
【解析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
【详解】
解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,
A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;
B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;
C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;
D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,
故选D.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
5、B
【解析】
由内错角定义选B.
6、B
【解析】
根据轴对称图形的概念对各选项分析判断即可得出答案.
【详解】
A.不是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项正确;
C.不是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项错误.
故选B.
7、C
【解析】
科学记数法的表示形式为a×10 的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.000 000 04=4×10,
故选C
【点睛】
此题考查科学记数法,难度不大
8、B
【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【详解】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=AB=3,
∴DE=2OD=6.
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.
9、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
10、D
【解析】
运用正确的运算法则即可得出答案.
【详解】
A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.
【点睛】
本题考查了四则运算法则,熟悉掌握是解决本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
【详解】
连接OA、OB、OC、OD、OE、OF,
∵正六边形ABCDEF,
∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
∴△AOB是等边三角形,
∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
在△OAM中,由勾股定理得:OM=.
12、
【解析】
利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
【详解】
∵AE=EC,BD=CD,
∴DE∥AB,DE=AB,
∴△EDC∽△ABC,
∴=,
故答案是:.
【点睛】
考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
13、﹣1
【解析】
根据“方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可.
【详解】
∵方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数,
∴1﹣m2=0,
解得:m=1 或﹣1,
把 m=1代入原方程得:
x2+2=0,
该方程无解,
∴m=1不合题意,舍去,
把 m=﹣1代入原方程得:
x2=0,
解得:x1=x2=0,(符合题意),
∴m=﹣1,
故答案为﹣1.
【点睛】
本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.
14、﹣4.
【解析】
作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.
【详解】
解:作AN⊥x轴于N,如图所示:
∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,
∴可设A(x,﹣x)(x<0),
在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,
解得:x=﹣2,
∴A(﹣2,2),
代入y=得:k=﹣2×2=﹣4;
故答案为﹣4.
【点睛】
本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.
15、1
【解析】
解:∵直线y=x+b与双曲线 (x>0)交于点P,设P点的坐标(x,y),
∴x﹣y=﹣b,xy=8,
而直线y=x+b与x轴交于A点,
∴OA=b.
又∵OP2=x2+y2,OA2=b2,
∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.
故答案为1.
16、
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】60000小数点向左移动4位得到6,
所以60000用科学记数法表示为:6×1,
故答案为:6×1.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
三、解答题(共8题,共72分)
17、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.
【解析】
1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。
(2) ①根据两种不同的表示形式得到m和h之间的函数关系即可。
②点C作y轴的垂线, 垂足为E, 过点D作DF⊥CE于点F, 证得△ACE~△CDF, 然后用m表示出点C和点D的坐标, 根据相似三角形的性质求得m的值即可。
【详解】
解:(1)当x=0时候,y=﹣x+2=2,
∴A(0,2),
把A(0,2)代入y=(x﹣1)2+m,得1+m=2
∴m=1.
∴y=(x﹣1)2+1,
∴B(1,1)
(2)由(1)知,该抛物线的解析式为:y=(x﹣1)2+1,
∵∵D(n,2﹣n),
∴则平移后抛物线的解析式为:y=(x﹣n)2+2﹣n.
故答案是:y=(x﹣n)2+2﹣n.
(3)①∵C是两个抛物线的交点,
∴点C的纵坐标可以表示为:
(a﹣1)2+1或(a﹣n)2﹣n+2
由题意得(a﹣1)2+1=(a﹣n)2﹣n+2,
整理得2an﹣2a=n2﹣n
∵n>1
∴a==.
②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F
∵∠ACD=90°,
∴∠ACE=∠CDF
又∵∠AEC=∠DFC
∴△ACE∽△CDF
∴=.
又∵C(a,a2﹣2a+2),D(2a,2﹣2a),
∴AE=a2﹣2a,DF=m2,CE=CF=a
∴=
∴a2﹣2a=1
解得:a=±+1
∵n>1
∴a=>
∴a=+1
【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。
18、(1)证明见解析;(2)15.
【解析】
(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
【详解】
(1)证明:连结OD,∵∠ACB=90°,
∴∠A+∠B=90°,
又∵OD=OB,
∴∠B=∠BDO,
∵∠ADE=∠A,
∴∠ADE+∠BDO=90°,
∴∠ODE=90°.
∴DE是⊙O的切线;
(2)连结CD,∵∠ADE=∠A,
∴AE=DE.
∵BC是⊙O的直径,∠ACB=90°.
∴EC是⊙O的切线.
∴DE=EC.
∴AE=EC,
又∵DE=10,
∴AC=2DE=20,
在Rt△ADC中,DC=
设BD=x,在Rt△BDC中,BC2=x2+122,
在Rt△ABC中,BC2=(x+16)2﹣202,
∴x2+122=(x+16)2﹣202,解得x=9,
∴BC=.
【点睛】
考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
19、(1)见解析;(2)
【解析】
(1)根据题意作出图形即可;
(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.
【详解】
(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,
则直线PQ即为所求;
(2)由(1)知,PD=PD′,
∵PD′⊥PD,
∴∠DPD′=90°,
∵∠A=90°,
∴∠ADP+∠APD=∠APD+∠BPD′=90°,
∴∠ADP=∠BPD′,
在△ADP与△BPD′中,,
∴△ADP≌△BPD′,
∴AD=PB=4,AP= BD′
∵PB=AB﹣AP=6﹣AP=4,
∴AP=2;
∴PD==2,BD′=2
∴CD′=BC- BD′=4-2=2
∵PD=PD′,PD⊥PD′,
∵DD′=PD=2,
∵PQ垂直平分DD′,连接Q D′
则DQ= D′Q
∴∠QD′D=∠QDD′
∴sin∠QD′D=sin∠QDD′=.
【点睛】
本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.
20、)补全的条形图见解析()Ⅱ级.().
【解析】
试题分析:(1)根据Ⅱ级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;
(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.;
(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人.
试题解析: (1)本次随机抽查的人数为:20÷40%=50(人).三级人数为:50-13-20-7=10.
补图如下:
(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.
(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有.
21、(1)见解析;(2)20°;
【解析】
(1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;
(2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.
【详解】
(1)如图,AD为所求;
(2)∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠BDA=90°,
∴∠BAD=90°﹣∠B=90°﹣70°=20°.
【点睛】
考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.
22、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
【解析】
(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
(II)根据众数、中位数和平均数的定义计算可得;
(III)用总人数乘以样本中5天、6天的百分比之和可得.
【详解】
解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
故答案为150、14;
(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
平均数为=3.5天;
(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
23、2.
【解析】
将原式化简整理,整体代入即可解题.
【详解】
解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)
=x1﹣1x+1+x1﹣4x+x1﹣4
=3x1﹣2x﹣3,
∵x1﹣1x﹣1=1
∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.
【点睛】
本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.
24、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).
【解析】
(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;
(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;
(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:
①当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;
②当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.
【详解】
解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),
∴,解得,
故抛物线的函数解析式为y=x2﹣2x﹣3;
(2)令x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
则点C的坐标为(3,0),
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴点E坐标为(1,﹣4),
设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),
∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,
∵DC=DE,
∴m2+9=m2+8m+16+1,解得m=﹣1,
∴点D的坐标为(0,﹣1);(3)
∵点C(3,0),D(0,﹣1),E(1,﹣4),
∴CO=DF=3,DO=EF=1,
根据勾股定理,CD===,
在△COD和△DFE中,
∵,
∴△COD≌△DFE(SAS),
∴∠EDF=∠DCO,
又∵∠DCO+∠CDO=90°,
∴∠EDF+∠CDO=90°,
∴∠CDE=180°﹣90°=90°,
∴CD⊥DE,①当OC与CD是对应边时,
∵△DOC∽△PDC,
∴,即=,
解得DP=,
过点P作PG⊥y轴于点G,
则,即,
解得DG=1,PG=,
当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,
所以点P(﹣,0),
当点P在点D的右边时,OG=DO+DG=1+1=2,
所以,点P(,﹣2);
②当OC与DP是对应边时,
∵△DOC∽△CDP,
∴,即=,
解得DP=3,
过点P作PG⊥y轴于点G,
则,即,
解得DG=9,PG=3,
当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,
所以,点P的坐标是(﹣3,8),
当点P在点D的右边时,OG=OD+DG=1+9=10,
所以,点P的坐标是(3,﹣10),
综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).
考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.
[数学][二模]江苏省南京市鼓楼区2024年中考二模试题(解析版): 这是一份[数学][二模]江苏省南京市鼓楼区2024年中考二模试题(解析版),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省南京市鼓楼区中考数学一模试卷(含解析): 这是一份2024年江苏省南京市鼓楼区中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年江苏省南京市鼓楼区中考数学二模试卷(含解析): 这是一份2023年江苏省南京市鼓楼区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。