2022届江苏省东台市第二教育联盟毕业升学考试模拟卷数学卷含解析
展开
这是一份2022届江苏省东台市第二教育联盟毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
成绩(米)
人数
则这名运动员成绩的中位数、众数分别是( )
A. B. C., D.
2.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
3.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A.3cm B.4cm C.5cm D.6cm
4.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )
A.3步 B.5步 C.6步 D.8步
5.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为( )
A.﹣ B.﹣3 C. D.3
6.在﹣3,﹣1,0,1四个数中,比﹣2小的数是( )
A.﹣3 B.﹣1 C.0 D.1
7.下列计算正确的是( )
A.a2•a3=a5 B.2a+a2=3a3 C.(﹣a3)3=a6 D.a2÷a=2
8.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是( )
A.28 B.29 C.30 D.31
9.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
A. B. C. D.
10.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为( )
A.y= B.y= C.y= D.y=﹣
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.
12.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
13.在△ABC中,点D在边BC上,BD=2CD,,,那么= .
14.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.
15.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.
16.请写出一个 开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________
17.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 .
三、解答题(共7小题,满分69分)
18.(10分)先化简,再求值:,其中a满足a2+2a﹣1=1.
19.(5分) (1)解方程组
(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
20.(8分)试探究:
小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE= ;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.
拓展延伸:
小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:
(1)求证:△ACF∽△FCE;
(2)求∠A的度数;
(3)求cos∠A的值;
应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.
21.(10分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.
22.(10分)先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.
23.(12分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
24.(14分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据中位数、众数的定义即可解决问题.
【详解】
解:这些运动员成绩的中位数、众数分别是4.70,4.1.
故选:D.
【点睛】
本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
2、C
【解析】
【分析】首先确定原点位置,进而可得C点对应的数.
【详解】∵点A、B表示的数互为相反数,AB=6
∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
又∵BC=2,点C在点B的左边,
∴点C对应的数是1,
故选C.
【点睛】本题主要考查了数轴,关键是正确确定原点位置.
3、A
【解析】
分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
详解:设CN=xcm,则DN=(8﹣x)cm,
由折叠的性质知EN=DN=(8﹣x)cm,
而EC=BC=4cm,
在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
即(8﹣x)2=16+x2,
整理得16x=48,
所以x=1.
故选:A.
点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
4、C
【解析】
试题解析:根据勾股定理得:斜边为
则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,
故选C
5、B
【解析】
设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
【详解】
设该点的坐标为(a,b),则|b|=1|a|,
∵点(a,b)在正比例函数y=kx的图象上,
∴k=±1.
又∵y值随着x值的增大而减小,
∴k=﹣1.
故选:B.
【点睛】
本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.
6、A
【解析】
因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.
【详解】
因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,
所以在-3,-1,0,1这四个数中比-2小的数是-3,
故选A.
【点睛】
本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.
7、A
【解析】
直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.
【详解】
A、a2•a3=a5,故此选项正确;
B、2a+a2,无法计算,故此选项错误;
C、(-a3)3=-a9,故此选项错误;
D、a2÷a=a,故此选项错误;
故选A.
【点睛】
此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.
8、C
【解析】
根据中位数的定义即可解答.
【详解】
解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,
最中间的两个数的平均数是:=30,
则这组数据的中位数是30;
故本题答案为:C.
【点睛】
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
9、A
【解析】
根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.
【详解】
由题意可得,
,
故选A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
10、C
【解析】
由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.
【详解】
∵S△AOC=4,
∴k=2S△AOC=8;
∴y=;
故选C.
【点睛】
本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.
【详解】
∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,
∴所画三角形时等腰三角形的概率是,
故答案是:.
【点睛】
考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
12、5 1.
【解析】
∵一组数据:3,a,4,6,7,它们的平均数是5,
∴,
解得,,
∴=1.
故答案为5,1.
13、
【解析】
首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值.
【详解】
∵,,
∴=-=-,
∵BD=2CD,
∴==,
∴=+==.
故答案为.
14、
【解析】
根据同弧或等弧所对的圆周角相等来求解.
【详解】
解:∵∠E=∠ABD,
∴tan∠AED=tan∠ABD==.
故选D.
【点睛】
本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.
15、(﹣3,2)
【解析】
作出图形,然后写出点A′的坐标即可.
【详解】
解答:如图,点A′的坐标为(-3,2).
故答案为(-3,2).
【点睛】
本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.
16、(答案不唯一)
【解析】
根据二次函数的性质,抛物线开口向下a
相关试卷
这是一份江苏省溧水县2022年毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了要使式子有意义,的取值范围是,一组数据等内容,欢迎下载使用。
这是一份2022年重庆市兼善教育集团毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算﹣的结果为等内容,欢迎下载使用。
这是一份2022年江苏省苏州昆山市毕业升学考试模拟卷数学卷含解析,共16页。试卷主要包含了下列计算正确的是,如图所示,在平面直角坐标系中A,|–|的倒数是等内容,欢迎下载使用。