2022届江苏省泰州市中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列标志中,可以看作是轴对称图形的是( )
A. B. C. D.
2.下列计算正确的是( )
A.a3﹣a2=a B.a2•a3=a6
C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6
3.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A.相切 B.相交 C.相离 D.无法确定
4.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
5.从 ,0,π, ,6这5个数中随机抽取一个数,抽到有理数的概率是( )
A. B. C. D.
6.下列图形中,是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
7.若kb<0,则一次函数的图象一定经过( )
A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
8.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1 B.m≤1 C.m>1 D.m<1
9.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
A.①④⑤ B.①②④ C.①③④ D.①③⑤
10.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1 B.2 C.3 D.4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.
12.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为 cm2(精确到1cm2).
13.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
14.已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.
15.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.
16.函数y=+的自变量x的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)
18.(8分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?
19.(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).
20.(8分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
LED灯泡
普通白炽灯泡
进价(元)
45
25
标价(元)
60
30
(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?
21.(8分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.
(1)求证:OE=OF;
(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.
22.(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
23.(12分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.
(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为 度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为 ;
(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
(3)PA、PB、PC满足的等量关系为 .
24.2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,符合题意.
故选D.
【点睛】
本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
2、D
【解析】
各项计算得到结果,即可作出判断.
解:A、原式不能合并,不符合题意;
B、原式=a5,不符合题意;
C、原式=a2﹣2ab+b2,不符合题意;
D、原式=﹣a6,符合题意,
故选D
3、B
【解析】
首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.
【详解】
解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.
∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
故选B.
【点睛】
本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.
4、C
【解析】
试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.
考点:有理数大小比较.
5、C
【解析】
根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.
【详解】
∵在,0,π,,6这5个数中有理数只有0、、6这3个数,
∴抽到有理数的概率是,
故选C.
【点睛】
本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.
6、A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,
故选A.
【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.
7、D
【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
【详解】
∵kb<0,
∴k、b异号。
①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
故选:D
【点睛】
此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
8、D
【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
详解:∵方程有两个不相同的实数根,
∴
解得:m<1.
故选D.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
9、D
【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
【详解】
解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
故①正确
则AE=10﹣4=6
t=10时,△BPQ的面积等于
∴AB=DC=8
故
故②错误
当14<t<22时,
故③正确;
分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
此时,满足条件的点有4个,故④错误.
∵△BEA为直角三角形
∴只有点P在DC边上时,有△BPQ与△BEA相似
由已知,PQ=22﹣t
∴当或时,△BPQ与△BEA相似
分别将数值代入
或,
解得t=(舍去)或t=14.1
故⑤正确
故选:D.
【点睛】
本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
形判定,应用了分类讨论和数形结合的数学思想.
10、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.
【详解】
由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750
即当t=1秒时,飞机才能停下来.
故答案为1.
【点睛】
本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.
12、174cm1.
【解析】
直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,
∵BD×AO=AB×BO,BD=,
圆锥底面半径=BD=,圆锥底面周长=1×π,侧面面积=×1×π×11=.
点睛: 利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.
13、
【解析】
根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
【详解】
解:二次函数的函数图象对称轴是x=0,且开口向上,
∴在对称轴的左侧y随x的增大而减小,
∵-3>-4,∴>.
故答案为>.
【点睛】
本题考查了二次函数的图像和数形结合的数学思想.
14、3
【解析】
∵-3、3, -2、1、3、0、4、x的平均数是1,
∴-3+3-2+1+3+0+4+x=8
∴x=2,
∴一组数据-3、3, -2、1、3、0、4、2,
∴众数是3.
故答案是:3.
15、.
【解析】
找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.
【详解】
∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,
∴所画三角形时等腰三角形的概率是,
故答案是:.
【点睛】
考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
16、x≥1且x≠3
【解析】
根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.
【详解】
根据二次根式和分式有意义的条件可得:
解得:且
故答案为:且
【点睛】
考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.
三、解答题(共8题,共72分)
17、()cm.
【解析】
作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.
【详解】
如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,
在中,∠BCD=60°,BC=60cm,
∴,
在中,∠BAF=45°,AB=60cm,
∴,
∴D到L的距离.
【点睛】
本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.
18、每件乙种商品的价格为1元,每件甲种商品的价格为70元
【解析】
设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.
【详解】
解:
设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,
根据题意得:,
解得:x=70,
经检验,x=70是原方程的解,
∴x﹣10=1.
答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.
【点睛】
本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.
19、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.
【解析】
试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;
(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.
试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,
∴,
设DE=5x米,则EC=12x米,
∴(5x)2+(12x)2=132,
解得:x=1,
∴5x=5,12x=12,
即DE=5米,EC=12米,
故斜坡CD的高度DE是5米;
(2)过点D作AB的垂线,垂足为H,设DH的长为x,
由题意可知∠BDH=45°,
∴BH=DH=x,DE=5,
在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,
∵tan64°=,
∴2=,
解得,x=29,AB=x+5=34,
即大楼AB的高度是34米.
20、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.
【解析】
1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;
(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.
【详解】
(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个.根据题意,得
解得
答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个.
(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元.则购进普通白炽灯泡(120﹣a)个.根据题意得
W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.
∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,
∵k=10>0,∴W随a的增大而增大,
∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.
答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.
【点睛】
本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.
21、(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.
【解析】
(1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;
(2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AB∥CD,OB=OD,
∴∠OAE=∠OCF,
在△OAE和△OCF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF;
(2)∵OE=OF,OB=OD,
∴四边形DEBF是平行四边形,
∵DE⊥AB,
∴∠DEB=90°,
∴四边形DEBF是矩形,
∴BD=EF,
∴OD=OB=OE=OF=BD,
∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE.
【点睛】
本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.
22、 (1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)
【解析】
(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;
(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.
【详解】
解:(1)、∵抛物线的顶点为A(1,4),
∴设抛物线的解析式y=a(x﹣1)2+4,
把点B(0,3)代入得,a+4=3,
解得a=﹣1,
∴抛物线的解析式为y=﹣(x﹣1)2+4;
(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;
令y=0,则0=﹣(x﹣1)2+4,
∴x=﹣1或x=3, ∴C(﹣1,0),D(3,0);
∴CD=4,
∴S△BCD=CD×|yB|=×4×3=6;
(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,
∵S△PCD=S△BCD,
∴S△PCD=CD×|yP|=×4×|yP|=3,
∴|yP|= ,
∵点P在x轴上方的抛物线上,
∴yP>0,
∴yP= ,
∵抛物线的解析式为y=﹣(x﹣1)2+4;
∴=﹣(x﹣1)2+4,
∴x=1±,
∴P(1+ , ),或P(1﹣,).
【点睛】
本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.
23、(1)150,(1)证明见解析(3)
【解析】
(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;
(1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;
(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.
试题解析:
【详解】
解:(1)∵△ABP≌△ACP′,
∴AP=AP′,
由旋转变换的性质可知,∠PAP′=60°,P′C=PB,
∴△PAP′为等边三角形,
∴∠APP′=60°,
∵∠PAC+∠PCA=×60° =30°,
∴∠APC=150°,
∴∠P′PC=90°,
∴PP′1+PC1=P′C1,
∴PA1+PC1=PB1,
故答案为150,PA1+PC1=PB1;
(1)如图,作°,使,连接,.过点A作AD⊥于D点.
∵°,
即,
∴.
∵AB=AC,,
∴.
∴,°.
∵AD⊥,
∴°.
∴在Rt中,.
∴.
∵°,
∴°.
∴°.
∴在Rt中,.
∴;
(3)如图1,与(1)的方法类似,
作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,
作AD⊥PP′于D,
由旋转变换的性质可知,∠PAP′=α,P′C=PB,
∴∠APP′=90°-,
∵∠PAC+∠PCA=,
∴∠APC=180°-,
∴∠P′PC=(180°-)-(90°-)=90°,
∴PP′1+PC1=P′C1,
∵∠APP′=90°-,
∴PD=PA•cos(90°-)=PA•sin,
∴PP′=1PA•sin,
∴4PA1sin1+PC1=PB1,
故答案为4PA1sin1+PC1=PB1.
【点睛】
本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.
24、(1)图见解析;(2)126°;(3)1.
【解析】
(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
【详解】
(1)48÷40%=120(人),
120×15%=18(人),
120-48-18-12=42(人).
将条形统计图补充完整,如图所示.
(2)42÷120×100%×360°=126°.
答:扇形统计图中的A等对应的扇形圆心角为126°.
(3)1500×=1(人).
答:该校学生对政策内容了解程度达到A等的学生有1人.
【点睛】
本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
2022年林芝中考考前最后一卷数学试卷含解析: 这是一份2022年林芝中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。
2022年江苏省泰州市靖江外国语校中考数学考前最后一卷含解析: 这是一份2022年江苏省泰州市靖江外国语校中考数学考前最后一卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,tan30°的值为,2016的相反数是等内容,欢迎下载使用。
2022年江苏省泰州市靖江实验学校中考考前最后一卷数学试卷含解析: 这是一份2022年江苏省泰州市靖江实验学校中考考前最后一卷数学试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,已知点 A等内容,欢迎下载使用。