年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届江苏省宝应县城郊中学中考五模数学试题含解析

    2022届江苏省宝应县城郊中学中考五模数学试题含解析第1页
    2022届江苏省宝应县城郊中学中考五模数学试题含解析第2页
    2022届江苏省宝应县城郊中学中考五模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省宝应县城郊中学中考五模数学试题含解析

    展开

    这是一份2022届江苏省宝应县城郊中学中考五模数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是,的绝对值是,已知电流I等内容,欢迎下载使用。
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若实数m满足,则下列对m值的估计正确的是( )
    A.﹣2<m<﹣1B.﹣1<m<0C.0<m<1D.1<m<2
    2.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )
    A.a﹣d=b﹣cB.a+c+2=b+dC.a+b+14=c+dD.a+d=b+c
    3.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:
    ①a、b同号;
    ②当x=1和x=3时,函数值相等;
    ③4a+b=1;
    ④当y=﹣2时,x的值只能取1;
    ⑤当﹣1<x<5时,y<1.
    其中,正确的有( )
    A.2个B.3个C.4个D.5个
    4.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )
    A.8B.10C.21D.22
    5.下列运算正确的是( )
    A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.﹣a8÷a4=﹣a4
    6.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( )
    A.16B.17C.18D.19
    7.的绝对值是( )
    A.8B.﹣8C.D.﹣
    8.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4).

    A.1B.2C.3D.4
    9.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )
    A.B.C.D.
    10.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
    A.B.C.D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.
    12.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.
    13.计算的结果等于_____.
    14.现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.
    15.如图,在菱形纸片中,,,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为________.
    16.如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 ___________ .
    17.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.
    三、解答题(共7小题,满分69分)
    18.(10分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示
    (1)求活动所抽取的学生人数;
    (2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;
    (3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.
    19.(5分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.
    (1)求证:PM∥AD;
    (2)若∠BAP=2∠M,求证:PA是⊙O的切线;
    (3)若AD=6,tan∠M=,求⊙O的直径.
    20.(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.
    (1)求线段AB的表达式,并写出自变量x的取值范围;
    (2)求乙的步行速度;
    (3)求乙比甲早几分钟到达终点?
    21.(10分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.
    22.(10分)解方程: +=1.
    23.(12分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:
    ① 教师讲,学生听
    ② 教师让学生自己做
    ③ 教师引导学生画图发现规律
    ④ 教师让学生对折纸,观察发现规律,然后画图
    为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图
    (1) 请将条形统计图补充完整;
    (2) 计算扇形统计图中方法③的圆心角的度数是 ;
    (3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?
    24.(14分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
    超市:购物金额打9折后,若超过2000元再优惠300元;
    超市:购物金额打8折.
    某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:
    (1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;
    (2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题解析:∵,
    ∴m2+2+=0,
    ∴m2+2=-,
    ∴方程的解可以看作是函数y=m2+2与函数y=-,
    作函数图象如图,
    在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,
    当m=-2时y=m2+2=4+2=6,y=-=-=2,
    ∵6>2,
    ∴交点横坐标大于-2,
    当m=-1时,y=m2+2=1+2=3,y=-=-=4,
    ∵3<4,
    ∴交点横坐标小于-1,
    ∴-2<m<-1.
    故选A.
    考点:1.二次函数的图象;2.反比例函数的图象.
    2、A
    【解析】
    观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
    【详解】
    解:依题意,得:b=a+1,c=a+7,d=a+1.
    A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
    ∴a﹣d≠b﹣c,选项A符合题意;
    B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
    ∴a+c+2=b+d,选项B不符合题意;
    C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
    ∴a+b+14=c+d,选项C不符合题意;
    D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
    ∴a+d=b+c,选项D不符合题意.
    故选:A.
    【点睛】
    考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
    3、A
    【解析】
    根据二次函数的性质和图象可以判断题目中各个小题是否成立.
    【详解】
    由函数图象可得,
    a>1,b<1,即a、b异号,故①错误,
    x=-1和x=5时,函数值相等,故②错误,
    ∵-=2,得4a+b=1,故③正确,
    由图象可得,当y=-2时,x=1或x=4,故④错误,
    由图象可得,当-1<x<5时,y<1,故⑤正确,
    故选A.
    【点睛】
    考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
    4、D
    【解析】
    分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
    详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
    故选D.
    点睛:考查中位数的定义,看懂条形统计图是解题的关键.
    5、D
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    A、原式=a5,不符合题意;
    B、原式=x9,不符合题意;
    C、原式=2x5,不符合题意;
    D、原式=-a4,符合题意,
    故选D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    6、A
    【解析】
    一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.
    故选A.
    【点睛】
    此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.
    7、C
    【解析】
    根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
    ①当a是正有理数时,a的绝对值是它本身a;
    ②当a是负有理数时,a的绝对值是它的相反数﹣a;
    ③当a是零时,a的绝对值是零.
    【详解】
    解:.
    故选
    【点睛】
    此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.
    8、C
    【解析】
    ∵EF⊥AC,点G是AE中点,
    ∴OG=AG=GE=AE,
    ∵∠AOG=30°,
    ∴∠OAG=∠AOG=30°,
    ∠GOE=90°-∠AOG=90°-30°=60°,
    ∴△OGE是等边三角形,故(3)正确;
    设AE=2a,则OE=OG=a,
    由勾股定理得,AO=,
    ∵O为AC中点,
    ∴AC=2AO=2,
    ∴BC=AC=,
    在Rt△ABC中,由勾股定理得,AB==3a,
    ∵四边形ABCD是矩形,
    ∴CD=AB=3a,
    ∴DC=3OG,故(1)正确;
    ∵OG=a,BC=,
    ∴OG≠BC,故(2)错误;
    ∵S△AOE=a•=,
    SABCD=3a•=32,
    ∴S△AOE=SABCD,故(4)正确;
    综上所述,结论正确是(1)(3)(4)共3个,
    故选C.
    【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.
    9、D
    【解析】
    先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.
    【详解】
    由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,
    当y=0时,x=1.
    故选D.
    【点睛】
    本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.
    10、C
    【解析】
    根据反比例函数的图像性质进行判断.
    【详解】
    解:∵,电压为定值,
    ∴I关于R的函数是反比例函数,且图象在第一象限,
    故选C.
    【点睛】
    本题考查反比例函数的图像,掌握图像性质是解题关键.
    二、填空题(共7小题,每小题3分,满分21分)
    11、48°
    【解析】
    连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
    【详解】
    连接OA,
    ∵五边形ABCDE是正五边形,
    ∴∠AOB==72°,
    ∵△AMN是正三角形,
    ∴∠AOM==120°,
    ∴∠BOM=∠AOM-∠AOB=48°,
    故答案为48°.
    点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
    12、5
    【解析】
    试题分析:利用根与系数的关系进行求解即可.
    解:∵x1,x2是方程x2-3x+2=0的两根,
    ∴x1+ x2=,x1x2=,
    ∴x1+x2+x1x2=3+2=5.
    故答案为:5.
    13、
    【解析】
    分析:直接利用二次根式的性质进行化简即可.
    详解:==.
    故答案为.
    点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键.
    14、18°
    【解析】
    试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=×360°=90°,则θ=108°-90°=18°.
    考点:圆锥的展开图
    15、
    【解析】
    过点作,交延长线于,连接,交于,根据折叠的性质可得,,根据同角的余角相等可得,可得,由平行线的性质可得,根据的三角函数值可求出、的长,根据为中点即可求出的长,根据余弦的定义的值即可得答案.
    【详解】
    过点作,交延长线于,连接,交于,
    ∵四边形是菱形,
    ∴,
    ∵将菱形纸片翻折,使点落在的中点处,折痕为,
    ∴,,
    ∵,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∴,,
    ∵为中点,
    ∴,
    ∴,
    ∴,
    ∴.
    故答案为
    【点睛】
    本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.
    16、.
    【解析】
    利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.
    【详解】
    ∵a1=4
    a2=,
    a3=,
    a4=,

    数列以4,−三个数依次不断循环,
    ∵2019÷3=673,
    ∴a2019=a3=,
    故答案为:.
    【点睛】
    此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.
    17、13
    【解析】
    试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.
    设母线长为R,则:
    解得:
    故答案为13.
    三、解答题(共7小题,满分69分)
    18、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好
    【解析】
    【分析】(1)求出频数之和即可;
    (2)根据合格率=合格人数÷总人数×100%即可得解;
    (3)从两个不同的角度分析即可,答案不唯一.
    【详解】(1)∵频数之和=3+6+7+9+10+5=40,
    ∴所抽取的学生人数为40人;
    (2)活动前该校学生的视力达标率=×100%=37.5%;
    (3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;
    ②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.
    【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.
    19、(1)证明见解析;(2)证明见解析;(3)1;
    【解析】
    (1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可.
    【详解】
    (1)∵BD是直径,
    ∴∠DAB=90°,
    ∵PO⊥AB,
    ∴∠DAB=∠MCB=90°,
    ∴PM∥AD;
    (2)连接OA,
    ∵OB=OM,
    ∴∠M=∠OBM,
    ∴∠BON=2∠M,
    ∵∠BAP=2∠M,
    ∴∠BON=∠BAP,
    ∵PO⊥AB,
    ∴∠ACO=90°,
    ∴∠AON+∠OAC=90°,
    ∵OA=OB,
    ∴∠BON=∠AON,
    ∴∠BAP=∠AON,
    ∴∠BAP+∠OAC=90°,
    ∴∠OAP=90°,
    ∵OA是半径,
    ∴PA是⊙O的切线;
    (3)连接BN,
    则∠MBN=90°.
    ∵tan∠M=,
    ∴=,
    设BC=x,CM=2x,
    ∵MN是⊙O直径,NM⊥AB,
    ∴∠MBN=∠BCN=∠BCM=90°,
    ∴∠NBC=∠M=90°﹣∠BNC,
    ∴△MBC∽△BNC,
    ∴,
    ∴BC2=NC×MC,
    ∴NC=x,
    ∴MN=2x+x=2.1x,
    ∴OM=MN=1.21x,
    ∴OC=2x﹣1.21x=0.71x,
    ∵O是BD的中点,C是AB的中点,AD=6,
    ∴OC=0.71x=AD=3,
    解得:x=4,
    ∴MO=1.21x=1.21×4=1,
    ∴⊙O的半径为1.
    【点睛】
    本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.
    20、(1);(2)80米/分;(3)6分钟
    【解析】
    (1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
    (2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
    (3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.
    【详解】
    (1)根据题意得:
    设线段AB的表达式为:y=kx+b (4≤x≤16),
    把(4,240),(16,0)代入得:

    解得:,
    即线段AB的表达式为:y= -20x+320 (4≤x≤16),
    (2)又线段OA可知:甲的速度为:=60(米/分),
    乙的步行速度为:=80(米/分),
    答:乙的步行速度为80米/分,
    (3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),
    与终点的距离为:2400-960=1440(米),
    相遇后,到达终点甲所用的时间为:=24(分),
    相遇后,到达终点乙所用的时间为:=18(分),
    24-18=6(分),
    答:乙比甲早6分钟到达终点.
    【点睛】
    本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.
    21、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
    【解析】
    分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
    (2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
    详解:(1)∵tan∠AOH==
    ∴AH=OH=4
    ∴A(-4,3),代入,得
    k=-4×3=-12
    ∴反比例函数为

    ∴m=6
    ∴B(6,-2)

    ∴=,b=1
    ∴一次函数为
    (2)
    △AHO的周长为:3+4+5=12
    点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
    22、-3
    【解析】
    试题分析:解得x=-3
    经检验: x=-3是原方程的根.
    ∴原方程的根是x=-3
    考点:解一元一次方程
    点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
    23、解:(1)见解析; (2) 108°;(3) 最喜欢方法④,约有189人.
    【解析】
    (1)由题意可知:喜欢方法②的学生有60-6-18-27=9(人);
    (2)求方法③的圆心角应先求所占比值,再乘以360°;
    (3)根据条形的高低可判断喜欢方法④的学生最多,人数应该等于总人数乘以喜欢方法④所占的比例;
    【详解】
    (1)方法②人数为60−6−18−27=9(人);
    补条形图如图:
    (2)方法③的圆心角为
    故答案为108°
    (3)由图可以看出喜欢方法④的学生最多,人数为 (人);
    【点睛】
    考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.
    24、(1)这种篮球的标价为每个50元;(2)见解析
    【解析】
    (1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
    (2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
    【详解】
    (1)设这种篮球的标价为每个x元,
    依题意,得,
    解得:x=50,
    经检验:x=50是原方程的解,且符合题意,
    答:这种篮球的标价为每个50元;
    (2)购买100个篮球,最少的费用为3850元,
    单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
    在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
    单独在B超市购买:100×50×0.8=4000元,
    在A、B两个超市共买100个,
    根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
    综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    分组
    频数
    4.0≤x<4.2
    2
    4.2≤x<4.4
    3
    4.4≤x<4.6
    5
    4.6≤x<4.8
    8
    4.8≤x<5.0
    17
    5.0≤x<5.2
    5

    相关试卷

    江苏省宝应县城郊中学2022-2023学年七下数学期末监测模拟试题含答案:

    这是一份江苏省宝应县城郊中学2022-2023学年七下数学期末监测模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,化简二次根式的结果为,已知反比例函数y等内容,欢迎下载使用。

    2023年江苏省扬州市宝应县中考数学二模试卷(含解析):

    这是一份2023年江苏省扬州市宝应县中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江苏省扬州市宝应县中考数学一模试卷(含解析):

    这是一份2023年江苏省扬州市宝应县中考数学一模试卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map